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InAs/(In,Ga)Sb type-II strained layer superlattices (T2SLs) have made significant progress since they were first proposed as an
infrared (IR) sensing material more than three decades ago. Numerous theoretically predicted advantages that T2SL offers over
present-day detection technologies, heterojunction engineering capabilities, and technological preferences make T2SL technology
promising candidate for the realization of high performance IR imagers. Despite concentrated efforts of many research groups, the
T2SLs have not revealed full potential yet. This paper attempts to provide a comprehensive review of the current status of T2SL
detectors and discusses origins of T2SL device performance degradation, in particular, surface and bulk dark-current components.
Various approaches of dark current reduction with their pros and cons are presented.

1. Introduction

Since proposed in 1980s [1–3], the InAs/(In,Ga)Sb T2SL
has gained a lot of interest for the infrared (IR) detection
applications. Focal plane arrays (FPAs) based on T2SL and
operating in mid-wave IR (MWIR, 3–5 𝜇m) and long-wave
IR (LWIR, 8–12𝜇m) are of great importance for a variety of
civil and military applications. Currently market dominating
technologies are based on bulk mercury cadmium telluride
(MCT) and InSb [4–6], and GaAs/AlGaAs quantum well IR
photodetectors (QWIPs).

While MCT detectors have very large quantum efficiency
(>90%) and detectivity, they are still plagued by nonuniform
growth defects and a very expensive CdZnTe substrate that is
only available in limited quantities by a foreignmanufacturer.
There has been significant progress on development of MCT
on silicon substrates, but good performance has been limited
to the MWIR band only. Moreover, MCT is characterized
by low electron effective mass resulting in excessive leakage
current [7]. The InSb detectors do not cover the LWIR
spectral range. QWIPs are based on III-V semiconductors
and their mature manufacturing process enables them to be
scaled to large format FPAs with a high degree of spatial
uniformity [8–10]. However, due to polarization selection

rules for electron-photon interactions in GaAs/AlGaAs QW,
this material system is insensitive to surface-normal incident
IR radiation resulting in poor conversion quantum efficiency,
In addition, their large dark currents lower the operating
temperature and increase the operating cost of the imager.
The development of FPAs based on mature III-V growth and
fabrication technology and operating at higher temperatures
will result in highly sensitive, more reliable, lighter, and less
costly IR sensors than currently available ones.

The InAs/(In,Ga)Sb T2SL material system is charac-
terized by a broken-gap type-II alignment schematically
illustrated in Figure 1 with electron and hole wavefunctions
having maxima in InAs and GaSb layers, respectively. The
overlap of electron (hole) wave functions between adjacent
InAs (GaSb) layers result in the formation of an electron
(hole) minibands in the conduction (valence) band. Optical
transition between the highest hole (heavy-hole) and the
lowest conduction minibands is employed for the detection
of incoming IR radiation. The operating wavelength of the
T2SLs can be tailored from 3𝜇m to 32 𝜇m by varying
thickness of one or two T2SL constituent layers [11–13]. Some
parameters of T2SL constituentmaterials, InAs andGaSb, are
shown in Table 1.
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Figure 1: Type-II band alignment of InAs/GaSb T2SL system.

Table 1: Some band structure parameters for InAs and GaSb (0K).

Parameter InAs Reference GaSb Reference
𝐸
Γ

𝑔
(eV) 0.417 [14] 0.812 [15]
𝐸
𝑋

𝑔
(eV) 1.433 [16] 1.141 [17]
𝐸
𝐿

𝑔
(eV) 1.133 [18] 0.875 [19]
𝑚
∗

𝑒
(Γ) 0.026 [20] 0.039 [16]
𝑚
∗

𝑙
(L) 0.640 [21, 22] 1.30 [23, 24]
𝑚
∗

𝑡
(L) 0.050 [21, 22] 0.100 [23, 24]
𝑚
∗

𝑙
(X) 1.130 [21, 22] 1.510 [23, 24]
𝑚
∗

𝑡
(X) 0.160 [21, 22] 0.220 [23, 24]

InGaSb layers of InAs/InGaSb T2SL are subjected to
biaxial compression strain causing splitting of light hole
and heavy-hole minibands in the T2SL band structure and,
therefore, suppression of Auger recombination rates relative
to bulk MCT detectors [25, 26]. However, the majority of
the research in the past ten years has focused on the binary
InAs/GaSb system. This is attributed to the critical thickness
limitations imposed on strained material grown with the
large mole fraction of In. The scope of this paper is also
limited to the InAs/GaSb T2SL devices.

1.1. Characterization of T2SL Material System. The physics
behind the T2SL material system is not yet very well
understood. Different theoretical methods have been applied
to understand the band structure, electronic, and optical
properties of superlattices. For example, Flatté et al. have
undertaken extensive theoretical modeling of the band
structure of superlattices [27–29], including investigation
of electronic structure of dopants [30]. Features of T2SL
photoabsorption spectra and optical properties of T2SL
detectorswere studied by Livneh et al. [31] andQiao et al. [32],
respectively, using k ⋅ p tight-binding model [33]. Empirical
pseudopotential method, in its canonical shape [34–36] and
four-component variation that includes interface layers [37],
was successfully utilized for the heterojunction design of
T2SL devices. Bandara et al. [38] have modeled the effect of
doping on the Shockley-Read-Hall (SRH) lifetime and the

dark current; Pellegrino and DeWames [39] have performed
extensive modeling to extract the SRH lifetime from dark-
current measurements.

Background carrier concentration is one of the funda-
mental properties of the absorber layer of T2SL detector
since it determines the minority carrier lifetime and diffu-
sion lengths. Transport measurements in T2SL are difficult
because of the lack of semi-insulating GaSb substrates.
Several techniques have been reported to measure and
analyze the electrical properties of T2SL by different groups.
Magneto-transport analysis [40] was performed on T2SL
structures grown on top of electrically insulating AlGaAsSb
buffer in order to suppress parasitic conduction. Hall [41],
capacitance-voltage, and current-voltage measurements [42]
of T2SL structures grown on semi-insulating GaAs substrate
directly or with the interfacial misfit (IMF) dislocation arrays
technique [43] were also reported. Variable magnetic field
geometric magnetoresistance measurements and a mobility
spectrum analysis, (MSA) technique for data analysis, have
been employed by Umana-Membreno et al. [44] to study
vertical minority carrier electron transport parameters in
T2SL structures. Works of Christol et al. [45, 46], Haugan
et al. [47], and Szmulowicz et al. [48, 49]are concerned with
the influence of T2SL composition and growth conditions on
background carrier concentration and mobility.

Since performance of T2SL device is strongly depen-
dent on T2SL structural perfection, the information on
interfacial roughness, compositional profile (i.e., interfacial
intermixing), and interfacial bonding across the noncommon
anion layers of InAs/GaSb T2SL is very important. Growth
conditions of T2SLs have been optimized by various research
groups to improve the interface quality [50–54]. Steinsh-
nider and colleagues [55–58] utilized the cross-sectional
scanning tunneling microscopy (XSTM) to identify the
interfacial bonding and to facilitate direct measurements of
the compositional grading at the GaSb/InAs heterojunction.
In situ study of origins of interfacial disorder and cross-
contamination in T2SL structures [59, 60] revealed impor-
tance of Arsenic (As) background pressure control during the
GaSb layers growth. Luna et al. [61] proposed the method of
systematic characterization of InAs-on-GaSb and GaSb-on-
InAs interfaces in T2SL with resolution less than 0.5 nm.

1.2. InAs/GaSb T2SL Detectors. T2SL diodes are predicted
to have a number of advantages over bulk MCTs, including
lower tunneling current, since the band edge effective masses
in T2SL are not directly dependent on the band gap energy
and are larger than HgCdTe at the same band gap [3]. The
band-engineered suppression of Auger recombination rates
[25, 26] leads to improved temperature limits of spectral
detectivities. In contrast with QWIPs, normal incidence
absorption is permitted in T2SLs, contributing to high
conversion quantum efficiencies. Moreover, the commercial
availability of substrates with good electrooptical homogene-
ity, and without large cluster defects, also offers advantages
for T2SL technology. Thorough comparisons between MCT,
InSb, QWIP, and T2SL technologies can be found in the
literature [62–65].
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Table 2: Properties of MWIR and LWIR T2SL detectors at 77 K [88, 89].

Parameter MWIR T2SL 𝜆Cut-off = 5 𝜇m LWIR T2SL 𝜆Cut-off = 10 𝜇m
Quantum efficiency (%) ∼70 ∼70
𝑅
0
𝐴 (Ω⋅cm2) 10

6
10
3

Detectivity (Jones) FOV = 0 1 × 10
14

6 × 10
11

Table 3: Properties of MWIR and LWIR T2SL FPAs at 77K [90–92].

Parameter MWIR T2SL 𝜆Cut-off = 5𝜇m LWIR T2SL 𝜆Cut-off = 10 𝜇m
Format 320 × 256 1024 × 1024
Quantum efficiency (%) ∼50 ∼50
NEDT (mK) >15 ∼30

High performance InAs/GaSb T2SL detectors have been
reported for MWIR [66–68], LWIR [12, 69–72], and very-
long wave IR (VLWIR) [73, 74] spectral regions. Moreover,
mega-pixel FPAs, that is, FPAs of sizes up to 1024 × 1024,
have been demonstrated [75, 76]. Multiband T2SL struc-
tures were realized, including short-wave IR (SW)/MWIR
[77], MW/MWIR [78], MW/LWIR [79, 80], LW/LWIR
[81], and SW/MW/LWIR [82] devices. Low-dark-current
architectures with unipolar barriers such as M-structure
[83], complementary-barrier infrared detector (CBIRD) [70],
W-structure [69, 84], N-structure [85], nBn [86, 87], and
pBiBn [12] have been designed and fabricated into single-
pixel detectors and FPAs at university laboratories (North-
western University, Arizona State University, University of
Oklahoma, University of Illinois, Georgia Tech University,
Bilkent University (Turkey), University of New Mexico),
federal laboratories (JPL, NRL, ARL, NVESD, and SNL), and
industrial laboratories (Raytheon, Teledyne Imaging Systems,
Hughes Research Laboratories, QmagiQ LLC, etc.). Tables
2 and 3 summarize properties of MWIR and LWIR T2SL
detectors and FPAs at 77K.

2. Limitations of T2SL Technology

Despite the numerous technological and theoretically pre-
dicted advantages T2SLs offer over present-day detection
technologies, the promise of superior performance of T2SL
detectors has not been yet realized. The T2SL detectors are
approaching the empirical benchmark ofMCT’s performance
level, Rule 07 [93]; however, the dark-current density demon-
strated by the T2SL detectors is still significantly higher than
that of bulkMCT detectors, especially in theMWIR range, as
illustrated in Figure 2.

To understand the reasons of high dark-current levels
demonstrated by the T2SL detectors the origins of dark cur-
rent have to be analyzed. Generally, dark current in detectors
based on narrow band gap semiconductors may be differen-
tiated into “bulk” and “surface” currents.Themost important
“bulk” dark currents are (i) generation-recombination (G-
R) current associated with the SRH process in the depletion
region of the detector and (ii) thermally generated diffusion
current associated with Rogalski [94] or radiative process in
both the n- and p-extrinsic regions of the detector [95].
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Figure 2: Dark-current density of T2SL detectors compared with
Rule 07 [93]. Abbreviations for the different institution working on
T2SL detectors: Fraunhofer-Institut (IAF), Jet Propulsion Labora-
tory (JPL), Naval Research Laboratory (NRL), Northwestern Uni-
versity (NWU), Raytheon Vision Systems (RVS), University of Cal-
ifornia, Santa Barbara (UCSB), Columbia University (Columbia),
University of Illinois, Urbana-Champaign (UIUC), and University
of New Mexico (UNM).

The SRH G-R process occurs through the trap levels
within the energy gap thus limiting lifetime of the minority
carriers. The origins of SRH centers are not well understood.
According to the statistical theory of the SRH process, the
SRH rate approaches a maximum as the energy level of
the trap center approaches midgap. Thus, the most effective
SRH centers are those located near the middle of the band
gap [96]. Analysis of the defect formation energy of native
defects dependent on the location of the Fermi level stabiliza-
tion energy has been performed by Walukiewicz [97], who
reported that, in bulk GaAs and GaSb, the stabilized Fermi
level is located near either the valence band or the midgap,
whereas in bulk InAs the stabilized Fermi level is located
above the conduction band edge. From this observation,
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themidgap trap levels inGaAs andGaSb are available for SRH
recombination, whereas in InAs they are inactive for the SRH
process, suggesting a longer carrier lifetime in bulk InAs than
in bulk GaSb and GaAs materials. Experimentally measured
values of carrier lifetimes yielded ∼325 ns for bulk InAs
and ∼100 ns for bulk GaSb, thereby confirming the initial
observation [98]. It may then be hypothesized that native
defects associated with GaSb are responsible for the SRH-
limited minority-carrier lifetimes observed in InAs/GaSb
T2SL.

Several methods have been employed to measure life-
time of photogenerated carriers of T2SL, including optical
modulation response [38, 47], time-resolved PL [99–102],
andphotoconductive response variationmeasurements [103],
to name just a few. Some of them provide more direct
measures of lifetime, while others rely on assumptions or
further measurements to perform extraction of lifetime [39,
104, 105]. Overall, the lifetimes reported forMWIR and LWIR
InAs/GaSb T2SL range from 0.13 ns [106] to about 100 ns
[107]. These values are significantly lower compared to the
MCT devices operating in the same wavelength range [107].

A “surface” dark current component is associated with
the surface states in the junction. During the individual pixel
isolation process, the periodic crystal structure terminates
abruptly resulting in formation of unsatisfied (dangling)
chemical bonds at the semiconductor-air interface respon-
sible for generation of surface states within the band gap
and pinning of the Fermi level. Moreover, etch by-products,
surface contaminant associated with the fabrication proce-
dure, and differential etching also create additional interfacial
states contributing to the dark current. Scaling of the lateral
dimensions of a T2SL detector (e.g., typical mesa dimensions
of individual FPA pixels are 20𝜇m × 20𝜇m) makes FPA
performance strongly dependent on surface effects due to a
large pixel surface/volume ratio.

This paper aims to review various ways of improving
performance of T2SL detectors in order for T2SLs to be
the technology of choice for high-performance IR imaging
systems. Proposed solutions for the reduction of “bulk” and
“surface” dark-current components as well as improvement
of detector signal-to-noise ratio and operating temperature
limits will be discussed in detail.

3. Proposed Solutions for the Improvement of
T2SL Detector Performance

3.1. Reduction of “Bulk” Dark Currents. To overcome the
carrier lifetime limitations imposed by the GaSb layer
in an InAs/GaSb T2SL, the type-II Ga-free SL, that is,
InAs/InAsSb SL, may be utilized for IR detection. A signifi-
cantly longer minority carrier lifetime has been obtained in
an InAs/InAsSb SL system as compared to an InAs/GaSb
T2SL operating in the same wavelength range (at 77K,
∼412 ns, and ∼100 ns, resp.) [100, 108]. Such increases in
minority carrier lifetimes, along with demonstrated band
gap adjustability [109] and suppressed Auger recombination
rates [110], suggest lower dark currents for InAs/InAsSb
SL detectors in comparison with their InAs/GaSb T2SL

counterparts. However, performance, in particular, signal-
to-noise ratio, of InAs/InAsSb SL-based detectors with pin
[111] and nBn [112] architectures was not superior to T2SL-
based devices operating in the same wavelength range. This
may be attributed to the increased tunneling probability in
InAs/InAsSb SL system due to the smaller band offsets [111]
and significant concentration of SRH centers in this material
[113].

Thermally generated diffusion currents may be signif-
icantly suppressed by the incorporation of barriers into
conduction and valence bands to impede the flow of carriers
associated with dark current (noise) without blocking pho-
tocurrent (signal). The improved performance of these T2SL
devices is credited to better confinement of the electronwave-
functions, reduced tunneling probability, increased electron
effective mass in modified T2SL structures, and reduction in
dark-current through the use of current blocking layers that
reduce one or more dark-current component. nBn [86, 87],
pBiBn [12], M-structure [83], W-structure [84], CBIRD [70],
and N-structure [85] are examples of T2SL detectors with
barrier architecture.

The band-offset tunability is critical parameter for the
realization of barrier devices. Barrier layers are selected such
that the hole-blocking layer offers an unimpeded electrons
flow while blocking holes and electron-blocking layer fulfill
the opposite function. Hence, one requires hole- (electron)
blocking layers to have zero valence (conduction) band
offsets with the absorber layer. Moreover, for the efficient
barrier structure design, complete macroscopic simulations
are required to get a good assessment of actual dark current
and photocurrent. This simulation may as well help with
design optimization of barrier structures, in particular, select-
ing an optimal barriers thickness, composition, and doping
concentration.

The extension of concept of heterostructure barrier engi-
neering in T2SL resulted in realization of interband cascade
infrared photodetectors (ICIPs) [114–118]. In ICIP detectors
each cascade stage is comprised of an absorber region,
relaxation region, and interband tunneling region. While
photocurrent is limited to the value produced in an individual
absorber, adding of extra- stages benefits the signal-to-noise
ratio, since the noise current in such devices scales inversely
with the total number of stages. Ability to change number
of stages with different absorber thicknesses is important
for the design of T2SL detectors with maximized signal-to-
noise ratio. The drawbacks of ICIPs are associated with the
complicated structure of these devices. In particular, due to
the number of layers and interfaces in the structure, some
of the fundamental device physics is still unclear and MBE
growth procedure is challenging.

Ability to heteroengineer the band structure of the T2SL
devices stipulates realization of one more type of low-noise
T2SL detectors, avalanche photodiodes (APDs) [119–121].
Control of individual layer thickness and composition offers
great flexibility in engineering of the electron band structure
to initiate single-carrier ionization. Moreover, APDs with
either electron or hole dominated avalanching may be fab-
ricated by engineering the higher lying T2SL energy levels.
It should be noted that an APD device with hole dominating
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avalanching is expected to have lower noise due to reduced
tunneling of heavier holes. Existence of hole dominated
avalanching structure also opens up possibility of combining
separate electron and hole multiplication regions in a single
device achieving very high gain with low excess noise factor.

3.2. Reduction of “Surface” Dark Currents. Despite numerous
efforts of various research groups devoted to the development
of effective passivation schemes for T2SL detectors, there is
still no well-established and generally acknowledged proce-
dure for passivation of such devices. Part of the problem is
the complexity of T2SL system, composed by the hundreds of
relatively thick (several monolayers, MLs) InAs, GaSb, and,
sometimes, AlSb layers, and thin (typically, less than 1 ML)
interfacial GaAs and InSb layers [55, 57, 58, 122]. Passivation
should satisfy dangling bonds of all these T2SL constituent
materials, originated at exposed device sidewalls after mesa
definition process, and prevent formation of interface states
in the T2SL band gap.

The great advantage of T2SL system, band gap tun-
ability, allowing realization of detectors spanning wide IR
range, serves as a disservice for the passivation development.
Interface states cause the pinning of Fermi level with the
bands bend towards lower energy near the surface. This
band bending induces accumulation or type inversion of
charge resulting in surface tunneling currents along sidewalls.
As was shown by Delaunay et al. [123], the narrow band
gap devices (LWIR and VLWIR, with band gap of 120meV
or lower) are more susceptible to the formation of charge
conduction channels along the sidewalls. Consequently, the
same passivation may be suitable for the T2SL MWIR and
inefficient for the T2SL detectors with longer operating
wavelength.

Moreover, passivation should exhibit thermal and long
term stability. In other words, passivation layer must not
undergo any change in its constitutional, physical, and
interfacial properties at variable temperatures (30–300K)
during the lifetime of theT2SLdetector (typically, 10,000 hrs).
Finally, passivation has to be easily integrated into the FPA
fabrication process.

In addition, since passivation applied on rough surfaces,
or surfaces contaminated by native oxides, and foreign
particles will result in little or no improvement of device
performance, we spent some time discussing the surface
preparation issues. To achieve minimal surface leakage, the
device sidewalls must be smooth, with no patterns of prefer-
ential etch presented, and clean, with removed native oxides
and etch by-products. Moreover, vertical etch profile is essen-
tial for the realization of high-fill factor, small pixel pitch,
and large format T2SL FPAs. The thorough comparisons of
various surface preparation and passivation techniques of
T2SL detectors are out of the scope of this review article and
can be found in literature [124, 125]. Next two sections aim
to familiarize the reader with various mesa definition and
passivation methods developed for T2SL devices.

3.2.1. Surface Preparation. Definition of nearly vertical mesa
sidewalls that are free of native oxide and defects is the crucial

step in InAs/GaSb T2SL detector fabrication process [126,
127]. Presence of elemental antimony on the etched T2SL
device sidewalls [128] may result in the conduction channel
parallel to the interface, which leads to increasing of surface
component of dark current. Unwanted native oxides are
usually removed prior to or during the pixel isolation process
with immersion in ammonium sulfide [127], phosphoric or
hydrochloric acid based solutions [129]. Introduction of BCl

3

gas into the plasma chemistry is also effective in removal of
native oxides and redeposited by-products [130].

Nowadays, high-density plasma etch processes are com-
monly utilized for InAs/GaSb T2SL material in spite of
inevitable degradation of sidewall surface electronic prop-
erties due to ion bombardment or unwanted deposition of
etch by-products [131, 132]. Plasma chemistry usually consists
of chlorine-based precursors (BCl

3
, Cl
2
, or SiCl

2
) due to

high volatilities of gallium, indium, antimony, and arsenide
chlorides providing fast etch rates and smooth morphologies
[133].The resulting etch profiles are vertical due to the plasma
sheath and the ionized gas directionality. Damage produced
during the dry etch may be partially restored by subsequent
chemical treatment [134]. Due to the ability of wet etches
to cause virtually no surface electronic damage, a chemical
etch attracts attention of researchers for single-pixel T2SL
device fabrication [135–140]. However, the isotropic nature
of wet etch process resulting in concave sidewall profile and
an unavoidable tendency to undercut etch masks making
precise dimensional control more difficult stipulates limited
application of wet etches for T2SL FPA fabrication.

3.2.2. Passivation. Conventional passivation methods of
T2SL devices include encapsulation of device sidewalls, by
thick layer of dielectric or organic material, and sulfidization.
Dielectric passivation of T2SL detectors is compatible with
current T2SL FPA fabrication procedures and, consequently,
very appealing to the T2SL scientists and engineers. Numer-
ous reports on passivation of MWIR and LWIR T2SL detec-
tors by silicon oxide or silicon nitride have been published
over the last fifteen years [74, 81, 130, 141–144]. Dielectric pas-
sivation, though shown to be effective, presents the challenges
of developing high-quality, low fixed, and interfacial charges
density dielectrics at process temperatures substantially lower
that the InAs/GaSb T2SL growth temperature to prevent
the T2SL period intermixing. Moreover, native fixed charges
presented in dielectric passivation layer can either improve
or deteriorate the device performance [143]; consequently,
the dielectric passivation may not passivate the low band gap
materials as effectively as high band gap materials.

T2SL passivation with organic materials, which are poly-
imide or various photoresists (PRs), is emerging alternative
to the dielectric passivation approach [134, 135, 145–150]. PRs
are commonly deposited at room temperature and thus the
T2SL thermal budget is not exerted. Moreover, PRs equally
effectively passivate T2SL detectors with different operating
wavelengths.

Chalcogenide passivation, or saturation of unsatisfied
bonds on semiconductor surface by sulfur atoms, has been
employed from early 1990s for the passivation of bulk III-V
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materials [151–162]. The enhanced photoluminescence (PL)
and reduced diode leakage current were credited to the
formation of III-S bond responsible for the reduction of
surface states within band gap.

The simplest sulfidization scheme of T2SL detectors is
device immersion in aqueous solution of ammonium sulfide.
No native oxide removal step is required prior to passivation
because the native oxides are etched by (NH

4
)OH formed

in water solution of ammonium sulfide. Short-term benefits
for the MWIR and LWIR T2SL device performance have
been reported [127, 129, 163] and the necessity for a suitable
capping layer to preserve good passivation quality in the
long term was reaffirmed. Thioacetamide (TAM, C

2
H
5
NS)

[124, 164] and octadecanethiol (ODT, CH
3
[CH
2
]
17
SH) [85]

treatments offer formation of more stable bonds between
sulfur and T2SL constituent elements (Ga, In, As, and Sb)
compared to weaker III (V)-oxygen-S bonds formed after
ammonium sulfide treatment.

One of relatively new sulfidization methods is electro-
chemical passivation (ECP) [129, 165] that is saturation
of dangling bonds with sulfur through electrolysis in S-
containing solution. Though effective, sulfur layer deposited
through ECP may oxidize easily and additional encapsula-
tion is required. Electron-beam evaporated ZnS satisfies the
dangling bonds with S-atoms simultaneously acting as an
encapsulant [119–121, 166].

Recently, several research groups reported the “com-
bined” approach for the passivation of T2SL detectors. For
example, Zhang et al. [167] noticed that the anodic sulfide
passivation combined with the SiO

2
significantly improved

the performance of MWIR T2SL detectors. DeCuir Jr. et al.
[147] found that the sulfide chemical treatment followed by
the SU-8 treatment inhibits the formation of native surface
oxides, satisfies dangling bonds, and prevents the sulfide layer
degradation over time.

4. Other Methods of T2SL Detector
Performance Improvement

The bulk components of the dark current (SRH and ther-
mally generated diffusion current) in T2SL detector may be
significantly diminished by scaling thickness of the device.
The abridged quantum efficiency (QE) of such device may be
restored through plasmon assisted coupling of incident elec-
tromagnetic radiation while maintaining low dark-current
level. Transmission enhancement and QE increase through
subwavelength metal hole array [168] and corrugated metal
surface structure [169], respectively, have been reported for
MWIR T2SL detectors.

Surface currents may be suppressed by reduced exposure
of narrow gapmaterials to the environment, for example, as a
result of encapsulation of etched sidewalls withwide band gap
material [133, 170] or buried architecture [84] that isolates the
neighboring devices but terminates within a wider band gap
layer. The former passivation approach requires very careful
surface cleaning prior the overgrowth procedure, whereas
latter is subjected to the possible crosstalk issues in FPAs due
to the uncertainty of the lateral diffusion length of minority

carriers. If the values of lateral diffusion length are larger than
the distance between neighboring pixels in the FPA, crosstalk
between the FPA elements can be encountered that leads to
the degradation of image resolution.

Another approach for the realization of high performance
T2SL sensors is growth of T2SL structures on high-index
plane GaSb [171]. The thickness of the T2SL detector grown
on the GaSb (111) substrate is reduced due to the natural dif-
ference of lattice parameters in the (111) and (100) directions,
whereas heavy hole confinement is increased by a factor of
three [172]. This translates into thinner detector structures
for a given detection wavelength and absorption coefficient
realized on (111) GaSb substrate, resulting in shorter growth
times. This also means decreased costs and material usage,
both of which are highly desirable. Moreover, the decreased
detector volume results in an improved signal-to-noise ratio,
since the number of thermally generated carriers is corre-
spondingly reduced.

5. Summary

This work provides a review of the current status and limita-
tions of IR detectors based on an InAs/GaSb T2SLs. It should
be noted that applications of T2SL system are not limited
to the IR detection only. Low thermal conductivity of T2SL
identifies it as a prospective material for low-temperature
Peltier coolers [173]. Spatially separated confinement of
electrons and holes, signature of type-II band alignment,
initiated InAs/GaSb core-shell nanowires realization [174,
175]. Field-effect transistors (FETs) [176, 177] and thermo
photovoltaic (TPV) [178] T2SL devices are another examples
of unconventional applications of T2SL material system.

Despite the numerous theoretically predicted advantages
that T2SLs offer over MCT, InSb, and QWIP-based detectors,
intensive heterostructure engineering efforts and develop-
ment of epitaxial growth and fabrication techniques, the
promise of superior performance of T2SL detectors has not
been yet realized. The dark-current density demonstrated by
the T2SL detectors is still significantly higher than that of bulk
MCT detectors, especially in the MWIR range.

The complexity of T2SL system, along with the intricate
detector architectures, results in no universal solution for
the suppression of dark currents. Different approaches that
address suppression of either bulk or surface dark current
components in order for T2SL to be the technology of choice
for high-performance imaging systems have been presented.

The SRH and thermally generated diffusion currents may
be significantly reduced by exclusion of GaSb layer from
InAs/GaSb T2SL stack, that is, Ga-free T2SL, and by the
incorporation of barriers device structure to impede the
flow of carriers associated with dark current (noise) with-
out blocking photocurrent (signal), respectively. Passivation
treatment of the exposed device sidewalls decreases the sur-
face currents. However, development of effective passivation
technique is hindered by the ease of native oxide formation
and requirements to the etched surface. In addition, the
same passivation may be suitable for the T2SL MWIR and
inefficient for the T2SL detectors with longer operating
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wavelength. Finally, one of the most effective passivation
approaches, saturation of unsatisfied chemical bonds with
sulfur atoms, results in formation of passivation layer with
poor long-term stability, and additional encapsulation is
required.

Integration of T2SL detectors with surface plasmon cou-
plers and utilization of high-index plane GaSb substrates are
recent alternatives for the improvement of T2SL detector
performance.Despite the promising preliminary results, both
of these directions require additional investigation.

In conclusion, unique combination of band structure
engineering flexibility and material properties of InAs/GaSb
T2SL provide a prospective benefit in the realization of
next generation IR imagers. Performance of MWIR and
LWIR T2SL detectors has not achieved its theoretically
predicted limit. To fully realize the T2SL potential methods
of suppression of various dark current components have to
be developed. Up-to-date techniques of dark current reduc-
tion include not only traditional passivation, but advanced
heterostructure engineering and integration of T2SL with
nanostructures as well.
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[27] M. E. Flatté, C. H. Grein, H. Ehrenreich, R. H. Miles,
and H. Cruz, “Theoretical performance limits of 2.1-4.1𝜇m
InAs/InGaSb,HgCdTe, and InGaAsSb lasers,” Journal of Applied
Physics, vol. 78, no. 7, pp. 4552–4561, 1995.

[28] K. Abu El-Rub, C. H. Grein, M. E. Flatte, and H. Ehrenreich,
“Band structure engineering of superlattice-based short-, mid-,
and long-wavelength infrared avalanche photodiodes for
improved impact ionization rates,” Journal of Applied Physics,
vol. 92, no. 7, pp. 3771–3778, 2002.
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