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The lead-free piezoelectric ceramics display good piezoelectric properties which are comparable with Pb(Zr,Ti)O
3
(PZT) and these

materials overcome the hazard to the environment and human health.The Bi
0.5
(Na,K)

0.5
TiO
3
(BNKT) is rapidly developed because

of good piezoelectric, ferroelectric, and dielectric properties compared to PZT. The origin of giant strain of BNKT piezoelectric
materials was found at morphotropic phase boundary due to crystal change from tetragonal to orthorhombic and/or precipitation
of cubic phases, in addition to domain switchingmechanism.Thedopants or secondary phaseswithABO

3
structure as solid solution

are expected to change the crystal structure and create the vacancies which results in enhancement of the piezoelectric properties.
In this work, we reviewed the current development of BNKT by dopants and secondary phase as solid solution. Our discussion will
focus on role of dopants and secondary phase to piezoelectric properties of BNKT.This result will open the direction to control the
properties of lead-free piezoelectric materials.

1. Introduction

The piezoelectric phenomena were discovered by Nobel lau-
reates Pierre and Jacques Curie in 1880 during measurement
of surface charges appearing under stress of some crystals
such as tourmaline, quartz, and Rochelle salt [1]. During the
World War I, Paul Langevin invented the underwater sonar
for submarine detection [1]. The detecting device was fab-
ricated by thin quartz crystal glued on two steel plates with
resonant frequency of 50 kHzwhich could detect a submarine
at the depth of 1500 meters. However, his achievements were
not overlooked by any industrial nation. During World War
II, the huge dielectric constants of piezoelectric ceramics
materials were isolatedly discovered in the United States,
Japan, and the Soviet Union by researching the materials
to improve capacitor of devices [1]. The discovery of easily
manufactured piezoelectric ceramics with astonishing per-
formance characteristics naturally touched off a revival of

intense research and development into piezoelectric devices
which led to their widespread applications. Among them,
barium titanate (BaTiO

3
) ceramic was discovered with the

giant dielectric constant of 1100, ten times higher than that
of rutile TiO

2
, the highest value at that time [2]. The first

commercial device made from BaTiO
3
was a phonograph

pickup and was produced in 1947 [2].The productions which
used the piezoelectricmaterials were rapidly developed in the
late 1950s because a number of other piezoelectric ceramics
were found; in particular, lead niobate piezoelectric ceramics
were discovered in 1952, and lead zirconate titanate (PZT)
compositions were found in 1955 [1, 2]. Several piezoelectric
ceramics have been commonly used today such as BaTiO

3
,

PZT (and modified composition such as (Pb,La)(Zr,Ti)O
3
,

etc.), and lead magnesium niobate (Pb(Mg
1/3

Nb
2/3

)O
3
) or

lead zinc niobate Pb(Zn
1/3

Nb
2/3

)O
3
. To date, PZT is one of

the most widely exploited and extensively used piezoelectric
materials for piezoelectric actuators, sensors, transducers,
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and so forth, even though lead is a very toxic substance as it
can cause damage to the kidneys, brain, the nervous system,
and, especially, the intelligence of the children [1]. In addi-
tion, the volatilization of PbO during the high temperature
sintering process not only causes environmental pollution but
also generates instability in the composition and electrical
properties of the production. According to the recent devel-
opments, the European Union (EU) is planning to restrict
the use of hazardous substances such as lead as well as other
heavymetals [3, 4]. Asia, China, Japan, and Republic of Korea
have also enacted similar policies and legislations to control
the usage of lead-containing materials [5–7]. In order to
circumvent the drawback of lead toxicity, extensive research
is focused on the quest for alternate piezoelectric materials.
Therefore, there has been a growing research interest in devel-
oping alternative lead-free piezoelectric materials that can
eventually replace the current lead-based ones. There is no
equivalent substitution for PZT till now; therefore, its use still
continues.Thismay be a temporary respite, but the legislation
certainly impressed the researchers to develop alternative
lead-free piezoelectric materials in order to replace lead-
based materials [8–10]. In this paper, we overviewed cur-
rent developments in Bi

0.5
(Na,K)

0.5
TiO
3
(BNKT) lead-free

piezoelectric ceramics and effects of various dopants on their
piezoelectric properties.

2. Bi0.5(Na,K)0.5TiO3-Based Lead-Free
Piezoelectric Materials

Among lead-free piezoelectric materials perovskite-based
type, bismuth sodium titanate Bi

0.5
Na
0.5
TiO
3
(BNT), bis-

muth potassium titanate Bi
0.5
K
0.5
TiO
3
(BKT), and solid

solution based on these compounds seem to be considered as
the most promising materials choice [11–14]. In the following
section a brief introduction of these materials is given.

2.1. Bismuth SodiumTitanate and Bismuth PotassiumTitanate

2.1.1. Bi
0.5
Na
0.5
TiO
3
Material. BNT is one of the most impor-

tant lead-free materials discovered by Smolensky et al. in
1960, which has an ABO3 distorted perovskite structure [10,
15].The structure of BNT can be considered in two ways: one
way is that the bismuth and sodium cations occupy the
corners of a cubic unit cell, oxygen anions occupy the face
centers, and titanium cations occupy the center of the
oxygen octahedra that are formed; the other way is a three-
dimensional cubic network of 8 corner-sharing TiO

6
octahe-

dra with bismuth and sodium cations at the center of the cube
formed by the octahedra [16]. In the ABO3 perovskite struc-
ture,A cations localize at the corners, B cations localize at the
body center, and oxygen anions localize at the face centers. In
case of BNT, the bismuth and sodium ions are on the A-site
and titanium ions are on theB-site of the structure; this is only
to show the stoichiometry that is present in an ideal mixture.
However, the real material does not exhibit any long-range
ordering. The BNT was rhombohedral structure with 𝑎 =
3.98 Å and 𝛼 = 89.67∘ at room temperature [17]. The BNT

undergoes three phase transitions as crystallographic struc-
ture changes. Pronin et al. andZvirgzds et al. obtained that the
first phase transition tetragonal-cubic phase occurred at
320∘C whereas the second phase transition temperature of
rhombohedral-tetragonal phase was 540∘C as they deter-
mined the Curie temperature [18, 19]. It reveals an interesting
dielectric which is anomaly with low phase-transition tem-
perature (∼200∘C) from ferroelectric to antiferroelectric
phase. Suchanicz et al. reported that the electrostrictive strain
increased upon heating when dielectric permittivity (𝜀) grew
with maximum near 320∘C; result from attribution of ferro-
electric (FE)/antiferroelectric (AFE) transition [20]. Above
320∘C, the electrostriction coefficient (𝑄

11
) was equal to

(0.4−0.3) × 10−2 C−2m4 and was typical for materials with
diffused phase transitions [20]. The piezoelectric module 𝑑

33

was 100–120 pC/N at 𝜀 = 500 which belongs to [100]
direction of the BNT single crystal [21]. Emelyanov et al.
characterized the piezoelectric properties of (001) plane in the
rhombohedral BNT single crystals phase which were of
piezoelectric coefficients (𝑑

31
, 𝑑

33
) 𝑑

31
= 160 pC/N, 𝑑

33
=

60 pC/N, 𝑘
31
= 0.55, and 𝑘

33
= 0.40 [22].The remnant polar-

ization (𝑃
𝑟
) and the coercive field (𝐸

𝑐
) of BNT single crystal

are 38 𝜇C/cm2 and 73 kV/cm, respectively [10]. Zhao et al.
reported that the values of 𝑑

33
and coupling factor (𝑘

𝑡
) were

102 pC/N and 0.58, respectively, and they were strongly
influenced by the grain size [23, 24]. Piezoelectric properties
of the BNTceramics, polarized by electric field of 40 kV/cmat
200∘C, were 𝑘

31
= 0.10, 𝑑

31
= 15 pC/N, 𝑑

33
= 70 pC/N, 𝜀 =

300, and tan 𝛿 = 0.011 [25].

2.1.2. Bi
0.5

K
0.5
TiO
3
Material. BKTwas also first fabricated by

Smolenskii and Agranovskaya which has a perovskite type
ferroelectric structure belonging to tetragonal crystal at room
temperature [11]. The BKT has been investigated much less
than BNT because it was not easy to prepare high-dense
ceramics due to the fact that secondary phases such as
K
2
Ti
6
O
13
easily formed during sintering at high temperature,

even though synthesis of the compound was not difficult
[10, 26]. BKT is a ferroelectric material with the Curie tem-
perature (𝑇

𝐶
) of 380∘C [27]. Ivanova et al. reported that BKT

has a tetragonal structure with 𝑎 = 3.913 Å and 𝑐 = 3.993 Å
at room temperature, which does not show any sign of order-
ing, whereas a phase transition into a pseudocubic phase
was observed at about 270∘C, and transition into a cubic
phase was at 410∘C [28]. Hiruma et al. obtained the remnant
polarization 𝑃

𝑟
= 22.2 𝜇C/cm2 and coercive field 𝐸

𝐶
=

52.5 kV/cm, electromechanical factor 𝑘
33
= 0.28 and 𝑑

33
=

69.8 pC/N [29].
Literature survey indicates that BKT is studied weaker

than BNT; its behavior is clearly indicated that it does not
show such unusual phenomena as BNT (isotropic points and
“disappearance” of phase transitions). It is clear that both
phases of BKT are ferroelectric that they both are diffused
and,most probably, overlapped each other.There is, of course,
a problem: coexistence of a paraelectric (PE) and two ferro-
electric (FE) phases within a crystal lattice. In addition, the
BKT single phase is not easy to fabricate in high-dense struc-
ture. However, such a problem is not new for ferroelectric



Advances in Materials Science and Engineering 3

perovskites. It is clear that many properties are still not
studied. However, by combining the sol-gel and conventional
solid-state reaction method, Zhu et al. obtained the high
compact density of ∼91.2%, which overcame the low density
of ∼70% of ceramics prepared by only traditional solid state
synthesis [30].The result was promoted to further investigate
the properties of BKT.

2.2. B
0.5
Na
0.5
TiO
3
-B
0.5
K
0.5
TiO
3
Solid Solutions Systems

2.2.1. B
0.5
(Na,K)

0.5
TiO
3
Fabrication Methods. The BNKT

ceramics were first fabricated by Buhrer by conventional
ceramics method via starting materials with metal oxide
Bi
2
O
3
and TiO

2
and alkali carbonate powder Na

2
CO
3
and

K
2
CO
3
[12]. The BNKT powder was obtained through ball

milling and solid state reaction by following equation:

Bi
2
O
3
+ (1 − 𝑥)Na

2
CO
3
+ 𝑥K
2
CO
3
+ 4TiO

2

→ 4Bi
0.5
(Na
1−𝑥

K
𝑥
)

0.5
TiO
3
+ 2CO

2

(1)

The single crystals (1−𝑥)BNT-xBKT (0 < 𝑥 < 0.14) were
fabricated by flux method [31]. The grain oriented and tex-
tured BNKT ceramics were first fabricated by Tani, through
reactive template grain growth method, using plate like
Bi
4
Ti
3
O
12
(BiT) particles as a template [32].The BiT platelets

were aligned parallel to the tape casting direction, and
grain oriented ceramics were prepared from Bi

2
O
3
and TiO

2

using molten salt synthesis. Additional amounts of Na
2
CO
3
,

K
2
CO
3
, and TiO

2
to stoichiometry were included in the

mixing batch to react with the BiT according to following
equation:

Bi
4
Ti
3
O
12
+ 2 (1 − 𝑥)Na

2
CO
3
+ 2𝑥K

2
CO
3
+ 5TiO

2

→ 8Bi
0.5
(Na
1−𝑥

K
𝑥
)

0.5
TiO
3
+ 2CO

2

(2)

Recently, BNKT powders were prepared by the sol-
gel process [33]. The starting materials as analytical-grade
chemical: bismuth nitrate (Bi(NO

3
)
3
⋅5H
2
O), sodium acetate

(CH
3
COONa⋅3H

2
O) or sodium nitrate (NaNO

3
), potassium

acetate (CH
3
COOK) or potassium nitrate (KNO

3
), and

tetrabutyl tinatate (Ti(OC
4
H
9
)
4
) or titanium isopropoxide

(Ti(OC
3
H
7
)
4
) were used to prepare a BNKT precursor

solution.Then, the sol was heated to get dried gels. Finally, the
dried gels were calcined and annealed to remove the organic
ingredients and to promote crystallization, respectively. In
addition, the BNKT thin films and nanofibers were also
fabricated by a sol-gel method and electrospinning technique
as reported by Chen et al. [34]. After preparing the sol, the
thin films and nanofibers were prepared on Pt/Ti/SiO

2
/Si

substrate by spin coating and electrospinning, respectively.
The Li-doped BNKT thin films have been grown by pulsed
laser deposition (PLD) using a krypton fluoride (KrF)
excimer laser with a wavelength of 248 nm [35].

2.2.2. Crystal Structure of B
0.5
(Na,K)

0.5
TiO
3
. Buhrer reported

that the lattice parameters of B
0.5
Na
0.5
TiO
3
increased with

BKT concentration addition [12]. Pronin et al. indicated that
the (1 − 𝑥)Bi

0.5
Na
0.5
TiO
3
-xBi
0.5
K
0.5
TiO
3
solid solution was

rhombohedral at 𝑥 < 0.18, pseudocubic at 𝑥 = 0.18–0.40,
and tetragonal at 𝑥 > 0.40 at the room temperature [18]. On
the morphotropic phase boundary at 𝑥 = 0.18, the lattice
parameters and unit cell volume change by jump [18].
However, Kreisel et al. obtained the structural change in solid
solution (1 − 𝑥)BNT-xBKT by using the Raman scattering.
Results showed existence of a phase transition at 𝑥 between
0.4-0.5. However, it also indicated that the phase transition in
range 𝑥 = 0.6–0.8 due to existence of nanosize Bi3+TiO

3
and

(Na
1−2𝑥

K
2𝑥
)+TiO

3
clusters [36]. This region is considered as

a morphotropic phase boundary (MPB) where the MPB
described the boundary that separates regions of difference
symmetries and can be crossed through a change in compo-
sition. However, the MPB was not reported clearly [37].

2.2.3. Some Physical Properties at Morphotropic Boundary
Diagram. The Curie temperature of (1 − 𝑥)Bi

0.5
Na
0.5
TiO
3
-

xBi
0.5
K
0.5
TiO
3
solid solution was found to go through a

minimum at 𝑥 = 0.1-0.2 [17]. Sasaki et al. studied this system
and obtained a maximum of 𝑑

31
= 42 pC/N with 𝑘

𝑝
= 0.23

which was observed on the first morphotropic boundary [14].
Elkechai et al. obtained 𝑑

33
= 96 pC/N, 𝑘

𝑝
= 0.21, and𝑁

𝑝
=

2800Hzm at 𝑥 = 0.16 [38]. Yoshii et al. investigated the
piezoelectric properties of a solid solution of the binary
system, xBi

0.5
Na
0.5
TiO
3
-(1−𝑥)Bi

0.5
K
0.5
TiO
3
[39]. Fine piezo-

electric properties in lead-free piezoelectric ceramics were
obtained near MPB composition between the rhombohedral
and tetragonal structures, and the highest electromechan-
ical coupling factor, 𝑘

33
, and piezoelectric constant, 𝑑

33
,

were 0.56 pC/N for Bi
0.5
(Na
0.84

K
0.16

)
0.5
TiO
3
and 157 pC/N

for Bi
0.5
(Na
0.8
K
0.2
)
0.5
TiO
3
, respectively. However, the 𝑇

𝑑

of Bi
0.5
(Na
0.8
K
0.2
)
0.5
TiO
3

was low at 174∘C. The 𝑇
𝑑

of
the MPB composition was low, and the 𝑇

𝑑
near the MPB

composition was sharply decreased. It is thought that
Bi
0.5
(Na
0.7
K
0.3
)
0.5
TiO
3
is a candidate composition for lead-

free actuator applications owing to its relatively large piezo-
electric constant, 𝑑

33
of 126 pC/N, dynamic 𝑑

33
of 214 pm/V,

and high depolarization temperature, 𝑇
𝑑
of 206∘C. Recently,

Izumi et al. reported that a small amount of BKT substitution
suppressed the remnant polarization from 38 𝜇C/cm2 at 𝑥 =
0 to about 15𝜇C/cm2 at𝑥 = 0.02; piezoelectric strain constant
(𝑑
33
) is enhanced by increasing 𝑥 up to 297 pm/V at 𝑥 = 0.14

during studying the (1 − 𝑥)BNT-xBKT single crystals (0 <
𝑥 < 0.14) [31].

BNT-BKT solid solutions are interesting because of three
phenomena: (i) existence of two morphotropic boundaries,
(ii) neighborhood of the antiferroelectric (AFE) phase of
BNT and high-temperature ferroelectric (FE) phase of BNT,
and (iii) complicated coexistence of several phases within one
perovskite lattice because of the phase-transition diffusion.

2.2.4. Mechanism Electric-Field-Induced Giant Strain

(1) Electric-Field-Induced Phase Transition. Ferroelectric crys-
tals are characterized by their asymmetric or polar structures.
In an electric field, ions undergo asymmetric displacement
and result in a small change in crystal dimension, which is
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proportional to the applied field [40, 41]. However, the effect
is generally very small and thus limits its usefulness.

In the search for lead-based materials with large electric-
field-induced phase transition (EFIS), an alternative and
applicable approach for ceramics was reported by Uchino
et al. and Pan et al. based on thework of Berlicourt et al. [5–7].
They observed a large strain due to a change of the unit cell in
(Pb,La)(Sn,Zr,Ti)O

3
ceramic because of a transition from

antiferroelectric to ferroelectric phase which was induced by
the electric field.

Zhang et al. proposed that the high strain in lead-free
Bi
0.5
Na
0.5
TiO
3
-BaTiO

3
-K
0.5
Na
0.5
NbO
3

system came both
from a significant volume change caused by the field-induced
antiferroelectric-ferroelectric phase transition and from the
domain contribution caused by the induced ferroelectric
phase [42, 43]. Jo et al. suggested that origin of the large strain
in (K
0.5
Na
0.5
)NbO

3
-modified (Bi

0.5
Na
0.5
)TiO
3
-BaTiO

3
lead-

free piezoceramics is due to the presence of a nonpolar phase
that brings the system back to its unpoled state once when
the applied electric field is removed, which leads to a large
nonpolar strain [44]. In addition, Lee et al. reported that the
giant EFIS was attributed to the transition from nonpolar
to ferroelectric phases in BNKT-BiAlO

3
small grains with

ferroelectric BNT large grains during external electric field
execution [45]. Recently, Lee et al. suggested a model on the
basis of the coexistence of polar nanoregions and a nonpolar
matrix which can reversibly transform into a polar ferro-
electric phase under cyclic fields via observation of giant
EFIS in Sn doped BNKT [46]. Ullah et al. suggested that the
origin of the large electric-field-induced giant strain is an
inherently large electrostrictive strain combined with an
additional strain introduced during electric-field-induced
phase transition [47]. However, the origin of phase transition
from polar to nonpolar due to doping is unclear because the
explanation based on the distorted tolerance factor results
fromdifference radius of dopants, but the tolerance factor just
estimated the phase stability and could not predict the sta-
bility of structural type.The further mechanism understating
needs to be further investigated.

(2) Domain Switching. The volume regions of the material
with the same polarization orientation are referred to as
ferroelectric domains [48]. When the sample is under zero
field and strain-free conditions, all the domain states have the
same energy; but if an electric field is applied, the free energy
of the system is lowered by aligning the polarization along
the electric field.Thus, large applied electric fields can perma-
nently reorient the polarization between the allowed domain
states, which are restricted by crystallography. As a result,
polycrystals random orientation can be electrically poled to
produce net piezoelectric coefficients. Recently, Ren pointed
out that the large EFIS in ferroelectric crystals is caused by
point-defect-mediated reversible domain switching [49]. It
is noted that the defect dipoles tend to align along the sponta-
neous polarization direction which was suggested by electron
paramagnetic resonance experiments [50, 51] and theoret-
ical modeling [52, 53]. The domain switched and aligned
by the applied electric field. The defects symmetry and
defects dipolemoment cannot be rotated in such diffusionless

process resulting in restoring force or reversing internal field
that favored reverse domain switching when electric field is
removed. However, theoretical calculation indicated that the
ultrahigh electromechanical response in single-crystal piezo-
electrics resulted from polarization rotation during poling
processing [54].

3. Role of Dopants in Bi0.5(Na,K)0.5TiO3

3.1. Role of Substitution in A-Site and B-Site in
Bi
0.5
(Na,K)

0.5
TiO
3
. TheBi

0.5
(Na,K)

0.5
TiO
3
is considered as a

typicalABO
3
perovskitewhere Bi3+, K+, andNa+ ions localize

at A-site and Ti4+ ions localize at B-site. In this part, the
current studies of the effect of dopants on BNKT’s properties
have been presented.

3.1.1. Rare-Earth Doped BNKT. The rare earth elements are
multivalent when they were doped in BNKT which resulted
in interesting and complicating phenomena. Li et al.
reported that electromechanical coupling factor (𝑘

𝑝
) of

Bi
0.5
Na
0.44

K
0.06

TiO
3
was increased from 25.4 to 27.8% with

0.2 wt%CeO
2
dopant and then decreased with higher CeO

2

content [55]. Liao et al. also obtained enhancement in piezo-
electric properties of Bi

0.5
(Na
1−𝑥−𝑦

K
𝑥
Li
𝑦
)
0.5
TiO
3
via CeO

2

doping [56]. The Bi
0.5
(Na
0.725

K
0.175

Li
0.1
)
0.5
TiO
3
ceramics

doped with 0.1 wt% CeO
2
show good performance with high

piezoelectric constant (𝑑
33
= 220 pC/N) and high coupling

factor (𝑘
𝑝
= 39.3%) [56]. Wang et al. reported the effects

of La substitution at Bi-site in (Bi
1−xNa0.8K0.2Lax)TiO3 which

were 𝑘
𝑝
maximumof 28%with 0.5wt%La doping and bipolar

maximum strain of 0.16% with 2wt.% La doping [57]. Yuan
et al. reported the strain enhanced up to 𝑘

𝑝
= 35% in La-

doped [Bi
0.5
(Na
0.75

K
0.15

Li
0.10

)
0.5
]TiO
3
[58, 59]. Yang et al.

obtained the electromechanical coupling factor 𝑘
𝑝
= 27% by

substitution of 0.0125wt.% Nd
2
O
3
in 0.82Bi

0.5
Na
0.5
TiO
3
-

0.18Bi
0.5
K
0.5
TiO
3
ceramics [60]. The 0.3 wt.% Sm

2
O
3
sub-

stitution in 0.82Bi
0.5
Na
0.5
TiO
3
-0.18Bi

0.5
K
0.5
TiO
3
ceramics

exhibited the high planar coupling factor (𝑘
𝑝
= 22.4%)which

were reported by Zhang et al. [61]. This group also
obtained the enhancement of electromechanical coupling
factor 𝑘

𝑝
= 24.63% with 0.2 wt.% Gd

2
O
3
doping in

0.82Bi
0.5
Na
0.5
TiO
3
-0.18Bi

0.5
K
0.5
TiO
3
ceramics [62]. Zhi-Hui

et al. reported optimum value of 0.15 wt.% Dy
2
O
3
added in

Bi
0.5
(Na
0.82

K
0.18

)
0.5
TiO
3
for enhancement of electrical prop-

erties [63]. Fu et al. obtained the effect of Ho
2
O
3
and Er

2
O
3

dopants in 0.82Bi
0.5
Na
0.5
TiO
3
-0.18Bi

0.5
K
0.5
TiO
3
where the 𝑘

𝑝

was 24.26 and 23.82% for 0.1 wt% Ho
2
O
3
and 0.6wt.% Er

2
O
3

dopants, respectively [64, 65]. Following this work, Fu et al.
reported the effects of Eu

2
O
3
on the structure and electrical

properties of 0.82Bi
0.5
Na
0.5
TiO
3
-0.18Bi

0.5
K
0.5
TiO
3
lead-free

piezoelectric ceramics where the optimumdoping of 0.2wt.%
Eu
2
O
3
has displayed the highest planer coupling factor 𝑘

𝑝
=

25.1% [66].

3.1.2. Transition Metal Doped Bi
0.5
(Na,K)

0.5
TiO
3
. Han et al.

first reported that the adding CuO in Bi
0.5
(Na,K)

0.5
TiO
3

ceramics resulted in decreasing the sintering temperature
[67]. Do et al. reported that the 𝑘

𝑝
of Bi
0.5
(Na
0.82

K
0.18

)
0.5
TiO
3
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decreased when it was added with CuO [68]. The 𝑆max/𝐸max
was 214 pm/V for added 0.02mol CuO, but it increased to
427 pm/V for added 0.02mol Nb

2
O
5
[68]. Jiang et al.

obtained the best piezoelectric properties with 𝑘
𝑝
= 30%

for 0.2 wt.% Mn2+ doped (Na
0.5
K
0.2
)
0.5
Bi
0.5
TiO
3
[69, 70].

In addition, the (Na
0.5
K
0.2
)
0.5
Bi
0.5
TiO
3
-0.5 wt.% Mn exhib-

ited strong ferroelectricity with remnant polarization 𝑃
𝑟
=

38 𝜇C/cm2 [69]. Mn doping restrained the ferroelectric
to antiferroelectric phase transition because of oxygen
vacancy [69]. Hu et al. obtained the optimal electric
properties in 0.16 wt.% MnCO

3
-added 74Bi

0.5
Na
0.5
TiO
3
-

20.8Bi
0.5
K
0.5
TiO
3
-5.2BaTiO

3
which displayed the piezoelec-

tric strain 𝑑
33
= 140 pC/N, mechanical coupling 𝑘

𝑝
= 18%,

and mechanical quality 𝑄
𝑚
= 89 while the depolarization

temperature (𝑇
𝑑
) stays relatively high at 175∘C [71]. The effect

of Mn and Co on electrostrains of Bi
0.5
Na
0.5
TiO
3
-BaTiO

3
-

Bi
0.5
K
0.5
TiO
3
has been investigated by Shieh et al. [72, 73].

It was remarkable that Mn doping with an electrostrain of
about 0.1% can bemaintainedwhen theMndoping amount is
in between 0.5 and 1.5mol%, which were contrast for the
codoped Bi

0.5
Na
0.5
TiO
3
-BaTiO

3
-Bi
0.5
K
0.5
TiO
3
; the values of

electrostrain and 𝑑
33

stay relatively constant regardless of
the Co-doping level [72, 73]. The 0.30wt.% MnO-added
Bi
0.485

Na
0.425

K
0.06

Ba
0.03

TiO
3
solid solutions were found to be

with optimal electrical properties of𝑑
33
= 109 pC/Nand 𝑘

𝑝
=

32% [74]. The highest 𝑘
𝑝
values for various dopants element

substitution in BNKThas been shown in Figure 1.Thehighest
𝑘

𝑝
of 39.3% was reported for rare-earth Ce codoped with Li-

modification BNKT ceramics.

3.1.3. Other Metal-Doped Bi
0.5
(Na,K)

0.5
TiO
3
. Do et al. repo-

rted that Bi
0.5
(Na
0.82

K
0.18

)
0.5
TiO
3
ceramics had the value of

𝑆max/𝐸max of 566 pm/V when 2mol.% of Ta5+ substituted
on Ti4+ site which were compared to without dopants with
value of 𝑆max/𝐸max of 233 pm/V [75]. Pham et al. obtained
the enhancement 𝑆max/𝐸max up to 641 pm/V due to 3mol.%
Nb5+ substitution on Ti4+ ions [76]. Hussain et al. reported
the piezoelectric coefficient of 641 pm/V for Zr4+ 0.43mol.%
concentration substitution in Ti4+ site [77]. In addition,
Hussain et al. found that Hf substitution with 3mol.%
at Ti-site resulted in enhancement of the electric-field-
induced strain up to 475 pm/V with corresponding strain
of 0.38% at an applied electric field of 80 kV/cm [78]. Binh
et al. reported the EFIS of 278 pm/V for 0.7 wt.% Y-doped
Bi
0.5
(Na
0.82

K
0.18

)
0.5
TiO
3
which were higher than without

dopant of EFIS of 228 pm/V [79]. At this moment, the
highest 𝑆max/𝐸max was 727 pm/V by codopant Li and Ta
in BNKT which was reported by Nguyen et al. [80]. The
[Bi
0.5
(Na
1−x−yKxLi𝑦)0.5]TiO3 ceramics show excellent piezo-

electric and ferroelectric properties, and the optimum prop-
erties were reported as follows: piezoelectric constant 𝑑

33
=

231 pC/N, planar and thickness electromechanical coupling
factors 𝑘

𝑝
= 41.0% and 𝑘

𝑡
= 50.5%, remanent polarization

𝑃

𝑟
= 40.2 𝜇C/cm2, and coercive field 𝐸

𝑐
= 2.47 kV/mm [81].

Recently, Lee et al. obtained 𝑆max/𝐸max of 585 pm/V for
5mol.% Sn doped in Bi

0.5
(Na
0.82

K
0.18

)
0.5
TiO
3
[46]. Fur-

thermore, Nguyen et al. reported the enhancement EFIS
in Bi
0.5
(Na
0.82

K
0.18

)
0.5
Ti
0.95

Sn
0.05

O
3
by additives Li where
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Figure 1: The effect of electric coupling factor in case of various
dopants in BNKT.

𝑆max/𝐸max increased up to 646 pm/V when 4mol.% Na was
replaced with Li [82]. Liao et al. reported the effect of K
and Ag dopant concentrations in Bi

0.5
Na
0.5
TiO
3
ceramics. K-

and Ag-doped ceramics exhibited good performances with
piezoelectric constant 𝑑

33
= 189 pC/N, electromechanical

coupling factor 𝑘
𝑝
= 35.0%, remnant polarization 𝑃

𝑟
=

39.5 𝜇C/cm2, and coercive field 𝐸
𝐶
= 2.3 kV/mm [83].

Isikawa et al. cosubstituted Ag into A-site and Ba into B-site
in BNKT and obtained enhancement in piezoelectric proper-
ties [84]. Moreover, this group also pointed out that the addi-
tion of La

2
O
3
/MnO to BNKAT-BT specimens displayed a

very large strain dynamic constant 𝑆max/𝐸max of 415 pm/V
which results from the field-forced phase transition from the
paraelectric phase to the ferroelectric phase [84].

3.1.4. Nonstoichiometric Effects in Bi
0.5
(Na,K)

0.5
TiO
3
. Ni et al.

obtained the effects of A-site vacancy on the electrical
properties in lead-free nonstoichiometric ceramics
Bi
0.5+𝑥

(Na
0.82

K
0.18

)
0.5−3𝑥

TiO
3
and Bi

0.5+𝑦
(Na
0.82

K
0.18

)
0.5
TiO
3

[85, 86]. The generation of A-site vacancy leads to a random
defect field which results in destroying the long-range order
phase induced by point field and makes the domain move
easier. However, the effects of B-site vacancy or oxygen
vacancy were not well-reported for BNKT system.

3.2. Role of Solid Solution of Secondary 𝐴𝐵O
3
Dopants in

Bi
0.5
(Na,K)

0.5
TiO
3
. At the MPB of BNK-BKT binary system,

an electric-field-induced strain and dynamic piezoelectric
coefficient were 0.23% and 291 pm/V, respectively, at an
applied electrical field of 80 kV/cm which are the considered
value for application in electromechanical devices [87].These
values were low as compared with PZT-based materials;
therefore it is impossible to apply for real electronic
devices. The recent researches tried to enhance the dynamic
piezoelectric coefficient by dopants via solid solution with
other 𝐴𝐵O

3
perovskites. In fact, the solid solution with

small amount (∼several mole percents) of 𝐴𝐵O
3
perovskite
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to BNKT resulted in strong enhancement the 𝑆max/𝐸max
values. Ullah et al. obtained large electric-field-induced strain
in BiAlO

3
-modified Bi

0.5
(Na,K)

0.5
TiO
3
with 𝑆max/𝐸max of

592 pm/V at 3mol.% BiAlO
3
, near the tetragonal-pseudo-

cubic phase boundary [87]. The 𝑆max/𝐸max was slightly
decreased to 579 pm/V via Bi

0.5
La
0.5
AlO
3
-modified

Bi
0.5
(Na
0.78

K
0.22

)
0.5
TiO
3

[88]. Tran et al. modified
Bi
0.5
(Na
0.82

K
0.18

)
0.5
TiO
3
ceramics with Sr(K

1/4
Nb
3/4

)O
3
and

got the significant temperature coefficient of 0.38 pm/V/K
[89]. Wang et al. fabricated 5mol.% SrTiO

3
-modified

Bi
0.5
(Na
0.8
K
0.2
)TiO
3
lead-free piezoceramic which had a

large unipolar strain of 0.36% (𝑆max/𝐸max = 600 pm/V)
at a driving field of 60 kV/cm at room temperature [90].
The Bi(Zn

0.5
Ti
0.5
)O
3
ceramic was found to enhance the

eletromechanical strain with 𝑆max/𝐸max of 547 pm/V and
500 pm/V for 5Bi(Zn

0.5
Ti
0.5
)O
3
-40(Bi

0.5
K
0.5
)TiO
3
-

55(Bi
0.5
Na
0.5
)TiO
3
and 2mol.% doped, respectively [91–93].

Hussain et al. obtained the 𝑆max/𝐸max of 434 pm/V with
3mol.% K

0.5
Na
0.5
NbO
3
-modified Bi

0.5
(Na
0.78

K
0.22

)
0.5
TiO
3

ceramic [94]. The 82Bi
0.5
Na
0.5
TiO
3
-16Bi
0.5
K
0.5
TiO
3
-

3KNbO
3
ceramics had good performances with piezoelectric

constant 𝑑
33
= 138 pC/N and electromechanical coupling

factor 𝑘
𝑝
= 38% [95]. Do et al. obtained the EFIS values of

443 pm/V in 4mol.% LiTaO
3
-modified 78Bi

0.5
Na
0.5
TiO
3
-

18Bi
0.5
K
0.5
TiO
3
[96]. Ngoc et al. reported that maximum

strain of 2mol.% BaZrO
3
-modified Bi

0.5
(Na
0.82

K
0.18

)
0.5
TiO
3

ceramics was two times higher than undoped case [97]. In
addition, they pointed out that the modification EFIS
of BaZrO

3
was better than that of BaTiO

3
[98]. The

electric-field-induced strain was significantly enhanced
by the CaZrO

3
-induced phase transition and reached

the highest value of 𝑆max/𝐸max of 617 pm/V when
Bi
0.5
(Na
0.78

K
0.22

)
0.5
TiO
3
was doped with 3mol.% CaZrO

3

dopant [99]. Kang et al. obtained 𝑆max/𝐸max of 333 pm/Vwith
4mol.% additive Bi

0.5
(Na
0.82

K
18
)
0.5
TiO
3
, and it was further

increased to 363 pm/V for 2mol.% CuO-added specimen
[100]. Recently, we obtained the enhancement of 𝑆max/𝐸max
up to 668 pm/V due to modify A-site by Li in lead-free
BNKT-modified with CaZrO

3
[101]. Zaman et al. obtained

𝑆max/𝐸max of 500 pm/V via codoped Zr and LiSbO
3
[102].

The Ba
0.85

Ca
0.15

Ti
0.90

Zr
0.10

O
3
, BaTiO

3
, NaSbO

3
, LiNbO

3
,

BiGaO
3
and Ba

0.85
Ca
0.15

Ti
0.90

Zr
0.10

O
3
were also found to

enhance the electromechanical properties when those were
solute in Bi

0.5
(Na,K)

0.5
TiO
3

[103–109]. Interestingly,
the multiferroics materials such as BiFeO

3
, BiMnO

3,

and BiCrO
3
-modified BNKT result in enhancement in

electromechanical properties [110–112]. However, solution
and/or composite BNKT with ferromagnetic such as
BNKT-CoFe

2
O
4
and BNKT-Fe

3
O
4
were not reported [113].

4. Discussion

The mechanism of giant electric-field-induced strain could
be considered as (i) electric-field-induced phase transition
and/or (ii) point-defect-mediated reversible domain switch-
ing. At room temperature, the BNT system is in rhom-
bohedral structure, and BKT is in tetragonal structure.
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Figure 2: The effect of dopants and solid solution perovskite ABO
3

to BNKT.

Their solid solutions have rhombohedral-tetragonal mor-
photropic phase boundary near 0.16–0.20 of BKT amount
[14]. The effects of elements dopants or codopants at A-
or B-site of BNKT were found to be effective the piezo-
electric properties by two mechanisms based on the dif-
ference radii point of view. Firstly, the dopants distorted
the tolerance factor due to the difference the radii of
dopant in comparing with Na+, K+, Bi3+, or Ti4+. The
distortion results in phase transition from tetragonal to
pseudocubic or tetragonal development from pseudocubic
which was strongly related to electric-field-induced phase
transition mechanism. Secondly, the dopants created the
oxygen vacancy due to difference the valence state when the
radii were performed which were related to point-defect-
mediated reversible domain switchingmechanism.The effect
of dopants and solid solution𝐴𝐵O

3
to BNKThas been sum-

marized in Figure 2. The ceramics compositions displayed
the highest 𝑆max/𝐸max values which were shown in details
in Table 1. The highest 𝑆max/𝐸max of each year was plotted
at Figure 3. The result indicated that electric-field-induced
giant strain of BNTK was comparable with that of PZT (such
as commercial PZT (PIC151)) and therefore these modified
BNKT can become a promising piezoelectric ceramics to
replace the lead-based piezoelectric materials. Actually, the
𝑆max/𝐸max values of BNKT ceramics were increased when
the element at B-site and/or A-site of BNKT ceramics were
modified. However, the 𝑆max/𝐸max values quickly increased
with several percent of dopants and then decreased when
further dopants were added. These phenomena were also
obtained while 𝐴𝐵O

3
modified BNKT as solid solution

because 𝐴 and 𝐵 diffused as codopant at both A- and B-
sites of BNKT with similar concentration.The observation of
enhancement of dynamic piezoelectric coefficient was related
to (i) distorted structure, (ii) phase transition from polar to
nonpolar phase, and (iii) polar phase growth inner nonpolar
phase. The recent explanation of phase transition due to
dopant based on distorted tolerance factor because radius
between host and dopants differed and oxygen vacancy
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Table 1: The detailed composition of BNKT-modified ceramics with highest electric-field-induced strain.

Ceramic compounds 𝑆max/𝐸max (pm/V) References
0.86Bi0.5Na0.5TiO3 − 0.14Bi0.5K0.5TiO3 297 Izumi et al. (2008) [31]
La2O3/MnO-added (1 − y)(Bi0.5Na0.49−𝑥K𝑥Ag0.01)TiO3 − yBaTiO3 415 Isikawa et al. (2009) [84]
Bi0.5(Na0.82K0.18)0.5Ti0.97Nb0.03O3 641 Pham et al. (2010) [76]
Bi0.5(Na0.78K0.22)0.5TiO3 296 Ullah et al. (2010), [87]
0.97Bi0.5(Na0.78K0.22)0.5TiO3 − 0.03BiAlO3 592 Ullah et al. (2010) [87]
0.95Bi0.5(Na0.8K0.2)0.5TiO3 − 0.05BiAlO3 391 Ullah et al. (2010) [115]
0.99(K0.5Na0.5)0.95Li0.05NbO3 − 0.01Bi0.5(K0.15Na0.85)0.5TiO3 330 Chen et al. (2010) [33]
Bi0.5(Na0.82K0.18)0.5TiO3 − 0.7 wt.% Y2O3 278 Binh et al. (2010) [79]
Bi0.5(Na0.78K0.22)0.5Ti0.97Zr0.03O3 614 Hussain et al. (2010) [77]
Bi0.5(Na0.78K0.22)0.5(Ti0.97Hf0.03)O3 475 Hussain et al. (2010) [78]
Bi0.5(Na0.82K0.18)0.5Ti0.98Ta0.02O3 566 Do et al. (2011) [75]
Bi1/2Na1/2TiO3 − Bi1/2K1/2TiO3 − 0.02Bi(Zn1/2Ti1/2)O3 500 Dittmer et al. (2011) [93]
Bi0.5(Na0.75K0.25)0.5TiO3 − BiAlO3 ∼900 Lee et al. (2011) [45]
0.09Bi0.5(Na0.78K0.22)0.5TiO3 − 0.01Bi0.5La0.5AlO3 579 Ullah et al. (2012) [88]
0.975Bi0.5(Na0.78K0.22)0.5TiO3 − 0.025BiAlO3 533 Ullah et al. (2012) [116]
0.97Bi0.5(Na0.78K0.22)0.5TiO3 − 0.03K0.5Na0.5NbO3 434 Hussain et al. (2012) [94]
Bi0.5Na0.385Li0.025K0.09Ti0.975Ta0.025O3 727 Nguyen et al. (2012) [80]
Bi0.5(Na0.82K0.18)0.5Ti0.95Sn0.05O3 585 Lee et al. (2012) [46]
0.94Bi1/2(Na0.8K0.2)1/2TiO3 − 0.06Bi(Mg1/2Sn1/2)O3 633 Pham et al. (2012) [117]
Bi0.5(Na0.74Li0.8K0.18)0.5Ti0.95Sn0.05O3 646 Nguyen et al. (2012) [82]
Bi1/2(Na0.82K0.18)1/2(Ti0.97Nb0.03)O3 641 Pham et al. (2012) [118]
0.97Bi0.5(Na0.78K0.22)0.5TiO3 − 0.03CaZrO3 617 Hong et al. (2013) [99]
0.95Bi0.5(Na0.8K0.2)0.5TiO3 − 0.05SrTiO3 600 Wang et al. (2012) [90]
0.99Bi0.5(Na0.82K0.18)0.5Ti0.980Zr0.020O3 − 0.01LiSbO3 500 Zaman et al. (2012) [102]
0.97Bi0.5(Na0.82K0.18)0.5 − 0.03Bi(Zn0.5Ti0.5)O3 385 Ullah et al. (2012) [119]
5Bi(Zn0.5Ti0.5)O3 − 40(Bi0.5K0.5)TiO3 − 55(Bi0.5Na0.5)TiO3 547 Patterson et al. (2012) [91]
Bi0.5(Na0.82K0.18)0.5TiO3 − 0.02CuO 214 Do et al. (2012) [68]
Bi0.5(Na0.82K0.18)0.5TiO3 − 0.02CuO − 0.02Nb2O5 427 Do et al. (2012) [68]
0.98Bi0.5(Na0.78K0.22)0.5TiO3 − 0.02LaFeO3 ∼500 Han et al. (2012) [120]
Bi0.5(Na0.82K0.18)0.5Ti0.95Sn0.05O3 ∼600 Han et al. (2013) [121]
0.98Bi0.5(Na0.82K0.18)0.5TiO3 − 0.02BaZrO3 437 Lee et al. (2013) [122]
0.97Bi0.5(Na0.82K0.18)0.5TiO3 − 0.03CaZrO3 603 Lee et al. (2013) [122]
0.98Bi0.5(Na0.82K0.18)0.5TiO3 − 0.02Ba0.8Ca0.2ZrO3 549 Lee et al. (2013) [122]
0.94Bi0.5(Na0.75K0.25)0.5TiO3 − 0.06BiAlO3 930 Lee et al. (2013) [123]
0.975Bi0.5(Na0.80K0.20)0.5TiO3 − 0.025LiNbO3 475 Hao et al. (2013) [124]
0.96Bi0.5(Na0.78K0.22)0.5TiO3 − 0.04Bi(Mg0.5Ti0.5)O3 636 Ullah et al. (2013) [125]
40Bi0.5K0.5TiO3 − 59Bi0.5Na0.5TiO3 − 1Bi(Mg1/2Ti1/2)O3 422 Kumar and Cann (2013) [126]
[Bi1/2(Na0.82K0.18)1/2]0.97La0.03TiO3 715 Dinh et al. (2013) [127]
0.95Bi0.5(Na0.80K0.20)0.5TiO3 − 0.05Ba(Ti0.90Sn0.10)O3 649 Jaita et al. (2014) [128]
0.97Bi0.5(Na0.80K0.20)0.5TiO3 − 0.03SrZrO3 617 Hussain et al. (2014) [129]
0.99Bi0.5Na0.4K0.1Ti0.98Nb0.02O3 − 0.01(Ba0.7Sr0.3)TiO3 634 Ullah et al. (2014) [130]
Bi0.5(Na0.80K0.20)0.5TiO3 − (K𝑦Na1−𝑦)NbO3 413–575 Hao et al. (2014) [131]
0.99Bi0.5(Na0.82K0.18)0.5Ti0.987Ta0.013O3 − 0.01LiSbO3 650 Zaman et al. (2014) [132]
0.99[(Bi0.5Na0.4K0.1)0.980La0.020TiO3] − 0.02[Ba0.7Sr0.3TiO3] 650 Ullah et al. (2014) [133]
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Figure 3: The highest values 𝑆max/𝐸max observation in years (from
2008 to 2014) in lead-free BNKT-based ceramics.

caused difference of valence states. However, the tolerance
factor has only estimated the range for stability of perovskite
but it was not showed for crystal symmetries. Thus, these
explanations were unreliable. The mechanism of electrical
field-induced strain was not well understood which still
required to further investigate. Consequently, the roles of A-
and B-site on the electrical field-induced strain were unclear
till now. However, we expected that the 𝑆max/𝐸max values
were further increased by using multidopant with optimal
concentration of dopants for each position A- and/or B-site
in BNKT ceramics.

In case of rare-earth doped BNKT, the enhancement
of piezoelectric properties mostly resulted from the point-
defect-mediated because rare-earth elements have various
valences which was displayed by various radii of ion, depend-
ing on the valence stable state substitution. For example,
the mechanism for the effect of CeO

2
doped BNKT is

complicated because Ce ion possibly exists in the BNKT
structure in two valence states: Ce4+ with radius of 0.92 Å
and Ce3+ with radius of 1.03 Å. In view of the radius, Ce3+
is possible to fill in Bi3+ vacancies and Ce4+ can enter into the
Bi-site. In this case, Ce4+ functions as a donor dopant leading
to some vacancies of A-site in the lattice, which facilitates
the movement of domain wall to improve the piezoelectric
properties. Another one is that Ce3+ and Ce4+ ions occupy
the A-site of Na+ (𝑟Na+ = 0.97Å) of BNKT composition
which are the same as the Ce4+ entering into Bi3+ [55, 56]. In
these cases, existing vacancies bring defect in lattice which
results in an increasing in the dielectric loss and grain size
and have some effects of piezoelectric properties. In addition,
the experiments demonstrated that rare-earth substitution in
Na+ first leads to creation of oxygen vacancies and lattice
contraction, but when the dopants concentration is over a
critical value then it begins to substitute for Bi3+, thus it leads
to lattice expansion [57–59].

In case of transitionmetal dopant inBNKT, themost find-
ings confirmed that dopants resulted in the lower sintering

temperature. It is valuable inmarket due to reduction the cost
of electronic devices.

In case of other metal dopant in BNKT, there were mixed
point-defect-mediated and electric-field-induced phase tran-
sition mechanisms which depend on the valence and site-
prefer to substitution. For example, the Ta5+ which replaced
Ti4+ at B-site leads to creation of A-site vacancies which
significantly contributed to the destabilization of ferroelectric
phase in the Bi perovskite [75, 80, 114]. These factors were
similar to a case of nonstochiometric at A- and B-site of
BNKT where the vacancies were occurred.

In case of solid solution between BNKT with other
𝐴


𝐵

O
3
perovskites, it is quite interesting because the ideal

was simple like tailor. Some of 𝐴𝐵O
3
perovskites were

unstable or hardly fabricated such as BiAlO
3
, but the theory

predicted that they should have goodpiezoelectric properties.
However, interestingly, they were stabled in solid solution in
BNKT matrix and strong enhancement piezoelectric prop-
erties. Similarly, the Bi

0.5
Zn
0.5
TiO
3
(BZT) was a good ferro-

electric material and it was tailed their properties in BNKT-
BZT as solid solution. In addition, BNKT-modified with
Bi
0.5
Li
0.5
TiO
3
has displayed the excellent piezoelectric con-

stant 𝑑
33
. Recently, the multiferroic materials have rapidly

developed because they exhibited the electric field controlled
ferromagnetism and magnetic field controlled the electric
polarization. However, multiferroic properties of BNKT-
based materials have not been reported. Therefore, we pro-
posed that the solid solution and/or composite of BNKT
with insulator ferromagnetism materials such as BiFeO

3
and

CoFeO
4
could be a good display of multiferroics properties

which will promise candidate to develop new class of multi-
ferroics materials.

5. Conclusion

The current status of lead-free piezoelectric materials has
been introduced. The lead-free BNKT-based ceramics were
reviewed based on the fabrication method, effect of dopants,
and solid-solution with other 𝐴𝐵O

3
perovskite. Most find-

ings confirmed that giant strain obtained in lead-free BNKT-
based ceramics is due to phase transition from polar to
nonpolar phase, and the highest 𝑆max/𝐸max values were
found at theMPB.However, the origin of phase transitionwas
still debated. The 𝑆max/𝐸max values of lead-free BNKT-based
ceramics are comparable with soft lead-based PZT-based
ceramics, which could be promising materials to readily
replace the lead-based PZT-based materials in devices. In
addition, the effects of secondary phase 𝐴𝐵O

3
as solid-

solution tailed the properties of BNKT matrix. Our work
reviewed current developments in lead-free BNKT-based
materials which were expected to understand current status
of researching about BNKT-based ceramics, therefore, to be
guidance for designing new class materials and applications.
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