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Abstract: The present paper considers the allocation of redundancy to coherent
systems with competing choices of system-components, while minimizing the total
cost of adding redundancy, subject to a predetermined level of system reliability.
Use of redundancy to enhance system reliability increases the total design cost.
This paper resolves a cost minimizing redundancy allocation problem (CMRAP) in
a coherent system, where total cost of using redundancy is minimized subject to a
given reliability target. A numerical example has been included to explicate the
method. A sensitivity analysis has been done to study the sensitivity of the optimal
solution, related cost and the gain in system reliability to the reliability targets. It
has been observed that the solution is robust within a group of reliability targets,
but they are sensitive from one group to the other. No fixed form of component life
distribution has been assumed here, which added enough flexibility in application
of this method.
Keywords: Coherent system; Cost minimization; Redundancy; Reliability target;
System reliability

1 INTRODUCTION
In this article an active redundancy is considered
where the redundant components are connected in
parallel to the original components of the system,
and the original and the redundant component, both
function simultaneously. When one fails, other
continues to work so that the system continues to
function without interruption. Usually, an active
redundancy is used in case it is difficult, if not
impossible, to replace the failed components when
the system is in operation. By the property of a
coherent system, system reliability can be enhanced
by increasing the redundancy into the system. Here

we consider coherent systems which can be
decomposed into a number of non-overlapping
subsystems such that the system fails with the
failure of any of the subsystems. Thus it is essential
to strengthen the subsystems, which can be done by
using redundancy. But the amount of increase in
system reliability varies with the number of
redundant components added. The problem
becomes complex when the optimal number of
redundant components is to be decided that
minimizes the total cost under some reliability
constraints.

http://www.aspbs.com/aiem/
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Unconstrained redundancy allocation problem or
reliability maximizing redundancy allocation
problem under cost (or some other) constraints are
widely discussed problems found in the literature.
Mention may be made of the work of Morrison [1]
which considered the optimal allocation of spares
in systems with two subsystems in the problem of
maximizing system life; Boland et al. [2] discussed
a redundancy allocation problem for series and
parallel systems; Shaked and Shanthikumar [3]
studied the problem of allocating m active
redundancies to an n-component series system
where the lifetimes of the original components and
redundant components are identically and
independently distributed; Coit and Smith [4]
considered reliability optimization of series-parallel
systems using genetic algorithm; Ahmadizar and
Soltanpanah [5] solved a reliability optimization
problem for a series system under budget
constraints. Often cost minimization becomes of
more concern than reliability maximization to the
reliability practitioners, ensuring a specified
reliability level of the system. Note that the
reliability of a system can be enhanced whenever
redundant components are added to its components,
but that would result in a costlier system. Therefore
a trade-off is necessary while improving system
reliability using redundancy. Ruan and Sun [6]
solved a cost minimization problem for series
systems. The present paper solves a cost
minimization problem where redundancy allocation
has been made under a reliability constraint. The
cost of adding redundancy is so minimized that a
reliability target must be met. The redundancy
number for each subsystem that minimizes the total
cost is the decision variable.

This paper considers a wide range of coherent
systems, decomposable into a number of non-
overlapping subsystems, which is commonly
referred to as having the series-parallel structures
and very much used in various fields of important
applications, such as a coal transportation system in
coal mines where coal is transported from bin to
boiler through primary feeders connected in
parallel, a reclaimer in series, secondary feeders in
parallel, an air conditioning system in which
number of air conditioning machines in parallel are
connected to the power source in series, a garden
sprinkler system with sensors in parallel, a
controller and a pump in series. Mention may be
made of a river water supply system, a hi-fi system,
an office sprinkler system used for fire-
extinguishing, an uninterrupted power supply (UPS)
in an alternate current power supply system,
TV/video system, and many more.

The novelty of this paper is that the method
developed here is capable of accommodating any
number of subsystems. Moreover, no fixed form of
component life distribution has been assumed here.
The proposed method is simple to apply and
produces an explicit form for getting an optimal
solution.

The paper is organized as follows: Section 2
discusses the model with necessary notation used in
the paper. Section 3 derives the main theorem,
which is needed to determine the rule for optimal
allocation of redundancy. Section 4 presents a
numerical example to illustrate the method with a
sensitivity analysis. Section 5 concludes the paper
with a discussion.

2 THE MODEL
An n-component coherent system is considered
here, which can be decomposed into k non-
overlapping subsystems in such a way that the
system fails with the failure of any of the
subsystems, while a subsystem fails when all of its
constiuent components fails, and no two
subsystems share any component. In a coherent
system every component is relevant and the system
is monotone [7], i.e., the system performance
improves with the improvement of any component
or a subset of components. Here the lifetimes of the
components are assumed to be independently
distributed among themselves and independent of
the lifetimes of the redundant components.

Notation:

Following notation are used in this paper:

Yj : random life of jth component, j = 1, 2, …, n

Mi : ith subsystem, i = 1, 2, …, k

ni : size of ith subsystem Mi, i = 1, 2, …, k

pi : reliability of the components belonging to the
ith subsystem, i = 1, 2, …, k,

xi : number of active redundant components to be
attached to the components of ith subsystem in
order to minimize the total cost of using
redundancy under reliability constraint, i = 1, 2, …,
k,

)...,,( 21 kxxxx : vector of the redundancy
numbers

ri : reliability of the redundant component that is to
be added to the ith subsystem

R : specified target level of system reliability

ci : cost of adding a redundant component to the
components of ith subsystem, i = 1, 2,…, k,
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)...,,()( 21 kxxxCC x : cost function for adding
rdundancy

)(i
Fq : unreliability of the ith subsystem, Mi.

The system reliability R(t) at time t is given by

1
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where T is the system life, state variable ul (t) is 0 if
lth component is in failing state, and 1, if lth

component is in functioning state at time t with
E(ul (t)) = pl (t).

Thus (1) shows that the system reliability can be
expressed in terms of its subsystem reliabilities that
involves component reliabilities pl(t)’s. From now
on, Henceforth the time variable t will be
suppressed for notational simplicity. It will not
affect the optimal solution anyway, because the
decision is to be made for the design stage only.

The reliabilities of the components belonging to a
same subsystem can reasonably be assumed to be
same, and the reliabilities of the redundant
components that are to be added to a same
subsystem can also assumed to be same. Thus the
reliabilities of all components belonging to the ith

subsystem are pi, and the reliabilities of redundant
components to be added to the ith subsystem are ri

(pi’s and ri’s may or may not be the same), for all i
=1, 2, …, k. Then, from (1), the reliability of the
augmented system can be written as

(2)                               ,])1()1(1[

])1(})1({1[)(

1

1



 



 





k

i

x
i

n
i

k

i

x
i

Mj
j

ii

i

i

rp

rpR x

since here the reliability of ith subsystem, Mi,
having ni components is
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The present work finds out a rule for deciding the
optimal redundancy number that should be added
to different subsystems so that the total cost for
adding redundancy is minimized, as well as we can
ensure a minimum level of system reliability,
which we call a reliability target. The results have
been derived under the assumption that the
components belonging to the same subsystem have

same reliability. The reliabilities of all redundant
components that are to be added to the same
subsystem are also assumed to be same. Sometimes
it may further be reasonable to assume the
reliability of the redundant components to be same
as that of the components belonging to the
respective subsystem, to which the redundant
components are to be added.

The number of redundant components,
)...,,( 21 kxxxx , should be so determined that

RxxxRR k  )...,,()( 21x and
)...,,()( 21 kxxxCC x is minimized.

Here our objective is to determine the optimal
values of decision variables, kxxx ...,, 21 that
minimize the cost function

)...,,()( 21 kxxxCC x , a linear objective
function, subject to a reliability target R, where, by
(2), the system reliability is as follows:
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The problem is to minimize 



k

i
ii xcCC
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)(x

subject to ,)( RR x

where xi ≥ 0, ci ≥ 0, for all i = 1, 2, …, k.

The problem can, alternatively, be stated in an
equivalent form of a maximization problem as
follows:

maximize 



k

i
ii xcC

1

)(x

subject to .log)(log RR ee  x

Next section determines the optimal solution to the
above problem.

3 MINIMIZING COST UNDER
RELIABILITY CONSTRAINT
Let us first prove the following lemma which will
be required to obtain the optimal solution

) ,..., ,( **
2

*
1

*
kxxxx that minimizes ).(xC

Lemma 1. )(log xRe is a concave function.

Proof. The diagonal elements of the Hessian
matrix of the function )(log xRe are:

iid kixR ie   ..., ,2 ,1  ,/)(log 22  x ,
and the off-diagonal elements are:

. ..., ,2 ,1,,  ,/)(log2 kjijixxRdd jiejiij  x
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for all i, j = 1, 2, …, k, j ≠ i.

Here all odd-ordered minors of the Hessian matrix
of )(log xRe are negative and even-ordered minors
are positive, and hence the matrix is negative
definite, indicating concavity of the
function ).(log xRe

Note that )(log  xRe is a convex function.
Let us now consider the following Lagrange
function:
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where the constant λ is a positive real number,
known as Lagrangian multiplier.

Note that )(xG is a convex function, being a linear
combination of two convex
functions, ),(log xRe by Lemma 1, and
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(which is concave as well, being a linear

function).

The next lemma finds the stationary point of )(xG
at which the Jacobian of the real-valued function
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Here λ can be obtained from the reliability
constraint .log)(log RR ee x
Hence the result.

Now we apply a multivariate constrained
optimization technique to determine the optimal
number of redundant components for all
subsystems. Let ),...,,( **

2
*
1 kxxx*x and λ* be

the solution of (k + 1) equations - the k equations,
as given by (5), and the reliability constraint

RR ee log)(log x . Since )(xG is convex, ( x *,
λ*) minimizes )(xG . Next we will show that (x*, λ*)
will minimize the cost function )(xC as well. In
fact, ( x *, λ*) is the global minimizer of )(xC ,
which will be shown in the following theorem.
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The sufficient condition for global minimum in the
problem of minimizing a function

),...,,()( 21 kvvvff v subject to

lkll bvvvhh  ),...,,()v( 21 , l = 1, 2, …, m, is
given below, which will be required to prove the
main theorem. The conditions are known as Kuhn-
Tucker conditions [8].
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Then the sufficient condition for global minimum
is:

If ),...,,( 21 kvvvf is a convex function, each

),...,,( 21 kl vvvh is concave, ),( ** λv satisfies the
conditions given in (6), and λl ≥ 0, l = 1, 2, …, m,
then v*is a global minimizer of ).,...,,( 21 kvvvf

Now the main result, stated in Theorem 1 below,
shows that (x*, λ*) is the global minimizer of
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, and hence gives the

optimal solution that minimizes total cost due to
adding redundancy.

Here v ≡ x (hence v* ≡ x*), ),()( xv Cf 
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Thus (x*, λ*), the stationary point of )(xG , which is
the solution of 0 )(xG , satisfies the following
conditions:
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Thus the sufficient condition for a global minimum,
as given in (6), is satisfied.

Hence the result.

Using Lemmas 1, 2 and Theorem 1, the optimum
solution (global minimizer) ) ,..., ,( **
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4 A NUMERICAL EXAMPLE
Let us consider the following system, as shown in
Fig. 1.

Fig. 1. A hi-fi system

The above system is decomposed into three
subsystems, viz., M1 = {1, 2}, M2 = {3}, M3 = {4,
5}. The reliability of each of the components
belonging to subsystem 1, is p1 = 0.9. The
component reliabilities for subsystems 2 and 3 are,
respectively, p2 = 0.85 and p3 = 0.95. Suppose, the
reliability target is R = 0.9. By (1), the system
reliability is 0.839396. The cost due to adding a

1

2

3

4

5

M1 M2 M3
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redundant component to the subsystem 1 is c1 = 40.
The costs for adding a redundant component to
subsystem 2 is c2 = 20 and to subsystem 3 is c3 =
30. The reliabilities of the redundant components to
be added to the subsystems are, respectively, r1 =
0.9, r2 = 0.85 and r3 = 0.95, which are same as the
component reliabilities of respective subsystems.
The number of components in the subsystems are,
respectively, n1 = 2, n2 =1, n3 = 2. Then the solution
for λ is found to be λ = 226.6948, and the number
of redundant components that are to be added to
different subsystems, subject to the reliability
constraint, are x1 = 0, x2 = 1, x3 = 0, for which the
minimum total cost becomes 20, and the system
reliability becomes 0.9653, with a gain of
14.99936% in reliability.

Table 1 shows the optimal allocation of redundant
components for different reliability targets. It
reflects how sensitive the optimal solution,
minimum cost and system reliability are to the
change in reliability target.

Table 1. Sensitivity of optimal redundancy allocation, minimum
total cost and system reliability to the reliability target

Reliability
target

Optimal allocation Total
cost

(min)

Augmented
system

reliability

Gain in
system

reliability
(%)

x1 x2 x3

0.85 0 1 0 20 0.9653 15.00

0.90 0 1 0 20 0.9653 15.00

0.95 0 1 0 20 0.9653 15.00

0.96 0 1 0 20 0.9653 15.00

0.97 0 2 0 40 0.9841 17.23

0.98 0 2 0 40 0.9841 17.23

0.99 1 2 0 80 0.9931 18.31

0.995 1 3 0 100 0.9960 18.66

0.999 1 18 10 700 0.9990 19.01

5 CONCLUSION AND DISCUSSION
Here a constrained cost minimizing redundancy
allocation problem is solved for a complex
coherent system which can be decomposed into a
number of subsystems such that the entire system
fails with the failure of any of the subsystems, and
a subsystem fails if all of its components fail. The
total cost of using redundancy has been minimized
subject to a given reliability target. The method can
be applied to any form of life distributions of any
complex or simple coherent system. There is no
restriction on the number of subsystems that
constitute the whole system under consideration. A

sensitivity analysis has been done to show how
sensitive the optimal solution (allocation of
redundant components to different subsystems),
total cost and system reliability are to the given
reliability target. The optimal solution, percentage
gain in system reliability and total cost of using
redundancy are robust within a class of values of
reliability targets, but sensitive from one class to
the other. The range of values within a class is
wider for smaller values of reliability target, while
narrower for higher values. Thus adding
redundancy does not improve the system reliability
much after a certain point. Hence achieving an
extremely high (as high as 0.999) reliability target
by adding redundancy needs a large number of
redundant components, and hence becomes
tremendously expensive.
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