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ABSTRACT 

In this work, the asymptotic equilibrium behaviour of dimensionless parameters in stably stratified turbulence 
submitted to a horizontal shear is studied using two different methods. The first one is an analytic method and 
is based on linear solutions obtained when non linear effects of pressure and viscosity are neglected. The 
Laplace Transform is used for integrating differential system. The principal result of this first part of our 
work is the existence of asymptotic equilibrium states at high shear for all non dimensionless parameters. The 
second method is a numerical one and is based on a second-order modeling of equations. The Speziale Sarkar 
and Gatski (SSG) model is retained for pressure-strain correlation and dissipation time evolution equation, 
whereas, three of the most known second-order models are retained for the scalar field. The principal result of 
this second part is the big contribution of the SSG models for predicting asymptotic equilibrium states of non 
dimensional parameters. 
 
Keywords: Stably stratified turbulence, Second order models, Asymptotic equilibrium behavior, Horizontal 
shear 

NOMENCLATURE 

b           anisotropic tensor of  Reynolds  

pC        specific heat at constant pressure 

g         constant of gravity 
K         turbulent kinetic energy   
P         pressure 
p         fluctuation of  the pressure 
Ri        dimensionless Richardson number 
S         mean shear 

ρS        mean scalar gradient  

,T i      gradient of the scalar  

t          time  

iu         i-th component of the fluctuating velocity  

Ui   i-th component of mean velocity                             

u ui j   reynolds stress tensor  

ui ρ     turbulent flux of the scalar 

,U p q   gradient of mean speed  

xi   component of an orthonormal Cartesian 

coordinate system  

α       thermal diffusivity 
µ      dynamic viscosity  
ν       kinematic viscosity  
λ       viscosity ratio 
τ        non dimensional time  

ijδ     Kronecker  Symbol 

ρ       fluctuation of the scalar  

0ρ     density of reference  

2ρ    variance of scalar  
ε       terms of dissipation of turbulent kinetic energy   

ρρε     terms of dissipation of  variance of the scalar  

ijε       terms of dissipation of tensor of Reynolds  

ρε i
      terms of dissipation of the scalar flux turbulent   

ijϕ     terms of pressure-strain correlation  

iϕ ρ    terms of pressure- scalar gradient correlation  
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1. INTRODUCTION 

Turbulence phenomena are frequently met in the 
fluid flows and do not constitute an intrinsic 
property of the fluid.  It is characterized using a 
whole of observation on the state of the movement. 
For example a turbulent flow tends to qualify a state 
of agitation of the movement where speeds move in 
a way apparently irregular, disordered and chaotic.  
In order to envisage the behavior of the turbulent 
flows, and for understanding well the complex 
turbulent processes of geophysics flows in the 
atmosphere and oceans, several authors (Holt et al. 
(1992) and Jacobitz et al. (1997) were interested to 
the analysis of different aspects of the coupled 
effects of a stable stratification (Bouzaiane et al. 
(2003b)) and a shear for a homogeneous turbulence. 
During the last years, Gerz et al. (1989) were 
interested to the study of the direct digital 
simulations for a homogeneous turbulence 
submitted to a vertical shear. They showed the 
influence of the Richardson number Ri on the 
turbulent parameters sizes.  Komori et al. (1983) 
studied the case of a laminated flow in an opened 
water channel. Itsweire et al. (1988) showed the 
importance of the Richardson number Ri on the 
evolution of turbulence. 

Turbulence in a vertically stably stratified fluid with 
uniform non vertical or horizontal shear has been 
considered in only a few investigations. Jacobitz 
and Sarkar (1998) performed a series of mean 
stream-wise velocity in which the angle θ between 
the gradients of mean density and mean stream-

wise velocity was varied from θ=0 to 
2

θ Π= . 

Laboratory experiments of turbulence in a stratified 
fluid with uniform horizontal shear have not been 
performed. However horizontal shear in 
experimental studies is present of fronts in a 
rotating stratified fluid (Chebbi  et al. (2012)), 
stratified jets (Caldwell (1987)). 

No many previous works have been interested to 
the horizontal shear except the result of DNS of 
Jacobitz and Sarkar (1999b) and Jacobitz (2002), 
this is surprising since the horizontal shear occurs 
frequently in environmental and many engineering 
applications. Examples are flow over topography, 
river in flow into the ocean or effluent discharge by 
power plants          (Jacobitz (2002)). For our 
knowledge, no previous works has been dedicated 
to second-order modeling of the stably stratified 
turbulence submitted to a horizontal shear. 
Furthermor no coupling between SSG model and 
others models for scalar fields are known to 
authors. This constitutes the principal motivation of 
our work.   

In section 2 equations of motion used in this study 
are introduced and the transports of second-order 
moments are derived. In section 3, analytical 
solutions in the case of high shear when non linear 
effects are neglected have been obtained. Solutions 
are investigated to study the asymptotic behavior at 
long time evolution of non dimensional parameters. 
The second-order modeling of transport equations 
of second moments makes the object of section 4 

whereas their castling in non dimensional forms and 
numerical integration makes the object of section 5. 
A peculiar attention will be accorded in this section 
also to the prediction of the asymptotic equilibrium 
states at long time evolution. Principal obtained 
results in this work, are summarized in section 6. 

2. MATHEMATICAL 
CONSIDERATIONS 

In an orthonormal Cartesian coordinate system of 
components (x1, x2, x3), the flow to be considered in 
the present work is a two dimensional (2-D) 
homogeneous turbulent shear flow of a viscous 
incompressible fluid. The mean velocity 

( ),0,01U U=  has a constant horizontal shear rate 

1
2

U
S

x

∂ =
∂

(Jacobitz et al. (1999a)) whereas the 

scalar field presents a constant mean gradient
3x

ρ∂
∂

.   

 

 

 
 

 
 

 

Fig. 1. Sketch of the mean density with vertical 
stratification and the mean velocity with 

horizontal shear 

2.1 Fundamental Equations 

The study of an incompressible turbulent shear flow 
is based on the continuity equation, the three-
dimensional unsteady Navier Stokes equation and a 
transport equation for the passive scalar. In the 
following, xi (with i=1, 2, 3) denotes the ith 
component of an orthonormal cartesian coordinate 
system. According to the classic Reynolds 
decomposition (Cadiou (1996a)), the dependent 

variables velocity Ui% , density ρ%  and pressure P%  

are decomposed into mean parts ,Ui ρ and 

P and a fluctuating parts ui, ρ  and p.   

U U ui i i= +% , ρ ρ ρ= +% , P P p= +%  

The decomposition of the dependent variables is 
introduced into the equations of motion, and the 
following evolution equations for the fluctuating 
parts are obtained (Cadiou (1996b)): 

0=
∂
∂

i

i

x

u                                                              (1)                                                                                                                              
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2
   (3)  

2.2 Transport Equations 

In this section, transport equations for the 

components u ui j of the Reynolds stress, the 

components ui ρ
 
of the turbulent scalar flux, the 

variance of scalar 2ρ  are obtained from basic Eqs. 
(1) to (3):  

ijijijij
ji BP

dt

uud
εφ −+−=                                    (4) 

Here 

k
k x

U
tdt

d

∂
∂+

∂
∂=   is the total time derivative.                                                                                                  

ρρρρ εφρ
iiii

i BP
dt

ud
−+−=                                (5) 

ρρρρ ερ
2

2

−= P
dt

d                                                   (6) 

Where terms denoted by P are terms of production 
due to mean kinematic and scalar gradients: 

1212 jiijij uuSuuSP δδ −−=                            (7)                                                                                                         

312 uuSuSP iii ρρ δρ −−=               (8)                                                                                                            

32 uSP ρρρρ −=                                                    (9)  

Terms denoted by B are terms of gravity: 

( )33
0

ijjiij uu
g

B δρδρ
ρ

+=                              (10)                                                                                                     

3
2

0
ii

g
B δρ

ρρ =                                                      (11)  

ijφ and ρφi are respectively terms of pressure-strain 

correlation and pressure-scalar gradient correlation: 















∂
∂

+
∂
∂

=
i

j

j

i
ij x

u

x

u
p

0

1

ρ
φ

   
i

i x
p

∂
∂= ρ

ρ
φ ρ

0

1     (12)                                                                               

It is essential here to note that these last terms are 
the more complex terms to be modeled (Thamri et 
al. (2011) and Cadiou (1996a)). 

Finally, terms ijε , ρε i  and ρρε  are terms of 

dissipation due to molecular effects:       

k

j

k

i
ij x

u

x

u

∂
∂

∂
∂

= νε 2                                     (13)                                                                                                                   

( )
k

i

k
i x

u

x ∂
∂

∂
∂+= ρναε ρ

                                        (14)                                                                                                       

kk xx ∂
∂

∂
∂−= ρραε ρρ 2                                  (15) 

While considering the trace of Eq.(4), we get the 
time evolution equation of turbulent kinetic 

energy
2

ii uu
K =  

               
                                           (16) 

 
Where P  is the turbulent production term due 

tothe horizontal shear

2

1

x

U

∂
∂ :                

1 2P S u u= −                                                        (17)  

 
B the buoyancy term: 

 
                                                       (18) 

                                                      

And ε is the dissipation term due to molecular 
effects:                                                                              
                                               

                                      (19)                                                                                                             
 

Classically, the potential energy ρK  is computed 

from the density fluctuations and is written as: 

 
                                              (20)   

 
The equations for the components of the Reynolds 

stress 2 2 2, , , , ,1 2 3 1 2 1 3 2 3u u u u u u u u u , of the 

turbulent kinetic energy
2

u ui iK = , the components 

of the density flux , ,1 2 3u u uρ ρ ρ  and the equation of 

scalar variance2ρ , are consequently obtained. 

Solutions of the obtained equations are now 
analysed firstly when non-linear effects of viscosity 
and pressure according to the DNS results of Holt et 
al. (1992), are neglected at high shear. This will be 
detailed in the following sub-section. 

2.3  Linear Solutions at High Shear    

Holt et al. (1992), non linear effects of viscosity 
and pressure have negligible effects at high shear 
(Holt et al. (1992) and Bouzaiane et al. (2003a)). If 
we take into account this result in the transport 
Eqs.(4), (5) and (6), terms denoted ϕ  and ε  are 
neglected. We obtain a system of ten first order 
coupled linear differential equations.  

2
1 2 1 2

du
S u u

dt
=−

  
                                                   (21)                                                                                                                              

0
2

2

=
dt

ud

                                                             
22) 

2
3 2 3

0

du g
u

dt
ρ

ρ
=−                                                      (23)                                        

2
2

21 uS
dt

uud
−=

                                          
(24) 

ε−−= BP
dt

dK

3
0

g
B u ρ

ρ
=

u ui i
x xk k

ε ν ∂ ∂=
∂ ∂

1 2
2 0

g
K

S
ρρ ρ ρ

=
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                                    (25) 

 

ρ
ρ 2

0

32 u
g

dt

uud
−=                                                (26)                                                                        

1 2 3
0

dK g
S u u u

dt
ρ

ρ
=− −                                    (27)                                                                                         

1
2 1 3

d u
S u S u u

dt

ρ ρ ρ=− −

                              
(28)                                          

2
2 3

d u
S u u

dt

ρ
ρ=−                                     (29)                                                                                                 

                                                                                     
                       (30)  
 
                                                                                                      

ρρ
ρ 3

2

2 uS
dt

d −=                                   (31)   

In a previous work, Bouzaiane et al. (2003c) have 
proposed linear solution for homogeneous sheared 
turbulence submitted to rotation. The same method 
used by Bouzaiane et al. (2003c) and Chebbi el al. 
(2012) is used in the present work. 
We investigate solutions of Eqs.(4), (5) and (6) 
when non-linear effects are neglected.  
Laplace Transform of a function f, defined for a 

position x by: ( )( ) ( )
0

sxL f x f x e dxs

∞ −= ∫  is used and 

following solutions parameterized by the gradient 
Richardson number Ri (Ri >0) are obtained: 

( ) ( )
( ) ( )

2 2
1 11 11 11 11

211 11

u C A B D Ch Ri

E Sh R F Sh Ri i

τ τ τ τ

τ τ

= + + + +

+

                 (32)                                

( )2
222u Cτ =                                            (33)                                                                                                                    

( )2 2 23 33 33 33u C F Sh R K Ch Ri iτ τ τ   = + +   
   

                 (34)                                                                                                                                                

( )1 2 12 12 12u u C A B Ch Riτ τ τ = + +  
 

                (35)                                                                                                                             

( )1 3 13 13 13

13 13

213 13

u u C A B Ch Ri

D Sh R E Ch Ri i

F Sh R K Ch Ri i

τ τ τ

τ τ τ

τ τ

 = + + + 
 

   + +   
   

   +   
   

                   

                                                                             (36)   

( ) ( ) ( )τττ ii RShBRChACuu 23232332 ++=                (37)     

( ) ( )
( ) ( )
( ) ( )

1 1 1

1 1

1 12 2

i

i i

i i

u C A Ch R

B Sh R D Sh R

E Ch R F Sh R

ρ ρ

ρ ρ

ρ ρ

ρ τ τ

τ τ τ

τ τ

= + +

+ +

+

                      

                                                                           (38)   

 

( ) ( ) ( )τττρ ρρ ii RShBRChAu 222 +=              (39)     

( ) ( ) ( )τττρ ρρ ii RShBRChAu 22 333 +=             (40)   

( ) ( ) ( )τττρ ρρρ ii RShBRChAC 222 ++=             (41)     

 
2
3

2
2

2
1

2 uuuq ++=  

( )
( ) ( ) ( )

2 2

2 2

q q q q i

q i q i q i

q C A B DCh R

E Sh R FCh R H Sh R

τ τ τ

τ τ τ

= + + + +

+ +

                  

                                                         (42)   
Here the coefficients A, B, C, D, E, F, H and K (see 
appendix A for detailed forms of these coefficients) 
are functions of initial conditions of turbulent 
parameters and Richardson number  

2

2

2
0 S

N

S

Sg
Ri == ρ

ρ
 (Rohr et al. (1988)), where S is 

the shear rate, N  the Brunt-Vaisala frequency 

0

2

ρ
ρSg

N −=  and St=τ is the non dimensional 

time. The analytic solutions will now be 
investigated to study the asymptotic behaviour of 
dimensionless parameters at long time evolution. 
This will make the object of the following sub-
section.  

2.4 Asymptotic Behaviour of Non 
Dimensional Parameters 

We begin by the study of the asymptotics behavior 
of non dimensional kinematic parameters, which 

are the components ,11b ,22b 33b , 1312,bb  and 

23b of the anisotropy tensor of Reynolds 

( 1

2 3

u ui j
bij ij

K
δ= − ). After we extended, our study 

to the scalar dimensionless parameters, namely the 

ratios of buoyancy to production term 
B

P
, the ratio 

of the potential energy to kinetic energy 
2

1

2 0

kg

S k k

ρ ρη
ρ ρ

= = , 1

2

u

u

ρ

ρ
 and the correlation 

coefficient 1
, ,
1

u

u

ρ

ρ
 (Where 2

1
'
1 uu = , 2' ρρ = ). 

Expressions of all dimensional parameters are 
easily deduced from the above solutions.  
At long time evolution, corresponding to 

Stτ = →∞ , solutions (32-42) lead to the simple 
relation of dimensionless parameters: 

( )
2

1 11 11
lim11 2 3 3

u F
b

F Hq q qτ
= − = −

∞ +→ ∞

 
 
 
 

      

                                                                             (43) 

2

0

2
3

3 ρ
ρ

ρ
ρ

g
uS

dt

ud −−=

1 3
2 3 1

0

du u g
S u u u

dt
ρρ= − −
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( )
2

1 12
lim22 2 3 3

u
b

qτ
= − = −

∞ → ∞

 
 
 
 

              (44)  

             
         
    . (45) 

         
         .                 (46)     

                                                                                                                                                                                                             

( ) 1 3 13lim13 2

u u K
b

F Hq q qτ

 
 = = ∞ +→ ∞  
 

   

                                                                             (47) 

( ) 2 3 0lim2 3 2

u u
b

qτ
= =

∞ → ∞

                        (48)                                                               

        

13

33

031

3

0
lim K

BA

S

g

Suu

ug

P

B ρρ

τ ρ
ρ

ρ
+

=













=









∞→∞

 

                                                                             (49)  

( )
2

lim 2
0 0

A Bg g

F Hq q q

ρ ρ ρη
ρ ρτ

+
= =∞ +→ ∞

 
 
 
 

     

                                                         (50)                                                                                        
1 11 1

lim
2 22 2

E Fu u

A Bu u

ρ ρ ρ ρ

ρ τ ρ ρ ρ

+
= =

+→ ∞∞

   
   
   
   

     

                                                                           (51)                                                                                         

1 11 1
, , lim 1 1 1 1
1 2 2 22 2 2

111

E Fu u

u
F A Bu

ρ ρ ρ ρ
ρ τ

ρ ρ ρ

+
= =

→∞∞ +

 
   
    

      

 

                                                       (52) 

The obtained expressions ( )11b
∞

, ( )22b
∞

, 

( )33b
∞

, ( )12b
∞

, ( )13b
∞

, ( )23b ∞ , 
B

P
 
 
 ∞

, 

( )η ∞ , 1

2

u

u

ρ

ρ

 
 
 
 
 ∞

and 1
, ,
1

u

u

ρ

ρ

 
 
 
 
 ∞

are only functions of 

constant coefficients A, B, F , H , K and E 
presented in appendix A. These solutions confirm 
the existence of an asymptotic equilibrium behavior 
at long time evolution of dimensionless parameters 
(Ben Abdallah et al. (2005)) b11, b22, b33, b12, b13, 

b23,
B

P
, 1

2

u

u

ρ

ρ

, 1
, ,
1

u

u

ρ

ρ
and

E

k
ρη= . Furthermore, they 

show that these states are only functions of the 
Richardson number Ri and the initial values of 
dimensionless parameters. This first approach is 
only a qualitative one. A quantitative analysis of the 
behaviour of dimensionless turbulent parameters, 
based on a second-order modeling of the behaviour 
of dimensionless parameters will be developed in 
the following sections.  

3. SECOND-ORDER 
MODELING FOR NON 
DIMENSIONAL EQUATIONS  

Second-order modeling remains one of the more 
important approaches to understand and study 
geophysical turbulent flows and complex 
configurations of turbulent flows (Khaleghi et al. 
(2010)). In the following sub-section, a brief 
introduction to second-order modeling followed by 
the principal second-order models is presented. 

3.1 Second-Order Modeling 

In this part, second-order turbulence closure models 
are retained to close transport Eqs.(21) to (31). The 

pressure-strain correlation ijφ  and the pressure-

scalar gradient correlation ρφi  are the principal 

terms to be modeled in evolution equations of 
Reynolds stress and turbulent scalar flux. These 

correlations ijφ  and ρφi  are classicaly separeted 

into three contributions (Bouzaiane et al (2004)):  
1 2 3

ij ij ij ijϕ ϕ ϕ ϕ= + +                                      (53) 

1 2 3
i i i iϕ ϕ ϕ ϕρ ρ ρ ρ= + +                                (54)                

Here, terms noted 1 are terms of return to the 
isotropy, they characterize the non linear 
mechanism of interaction between turbulent 
fluctuations. The terms 2 represent the interaction 
between mean and turbulent flows, they 
characterize the linear terms .Finally, the terms 3 
are terms due to buoyancy effects (Bouzaiane et al. 
(2004)). During the two past decades several 
models have been presented by authors. Perhaps the 
Speziale Sarkar and Gatski model for pressure-
strain correlation is among the most interesting one. 
For its great success during the last decade, the SSG 
model (Speziale et al. (1990)) is retained in this 
work. We precise here that to our knowledge this 
model has not been extented to scalar effects 
present in our stratified turbulent flow. A coupling 
between the SSG model retained for kinematic field 
and three of the most known models for scalars 
field is proposed and makes the motivation of this 
part of our work. 

3.2 The Speziale Sarkar and Gatski (SSG) 
model  

This model concerns only kinematic turbulence, 
Speziale et al. (1990) separated the part of the 
return to the isotropy from the linear part.  This 
model is written in the following form:  

1 2
ij ij ijϕ ϕ ϕ= +

 

1 2
3( 2)( )1 1

3

ij
C b C b IIij ij ij b

δ
ϕ = − + − +

             
 (55)                                                                            

II b bb kl lk=  , 3.41C =                    

  

)(
2

1
)

3

2
(

2

1

)(
2

1

54

3332
2

ikjkjkikijmnmnkijkkjik

ijmnmnijmnmnij

wbwbCSbSbSbC

SCbbCbSbC

++−+

+−+=

δ

φ

 

( ) 1 2 0l i m1 2 2

u u
b

qτ
= =

∞ → ∞

 
 
 
 

( )
2

1 13 3 3 3 3
l im3 3 2 3 3

u F K
b

F Hq q qτ

+
= − = −

∞ +→ ∞

 
 
 
 
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                                                                             (56)                                                                                                                                     

Where 
1.8 0.8 1.252 3 4

0.4 1.35 33

C C C

C C

= = =

= =
 

Speziale et al. (1990) supplemented their models of 
the pressure-strain correlation by the following 
model of the equation of viscous dissipation ε: 

                          

             (57) 
 

Where 9.145.1 21 == εε CC  

This model as mentioned is not extended to scalars 
effects, it will be coupled respectively to the classic 
Launder, Reece and Rodi (LRR) model (Launder et 
al. (1975), Cadiou (1996b)), the Craft and Launder 
(CL) model (Craft el al. (1989), Launder et al. 
(1996) and Launder (1999)) and the Shih and 
Lumley (SL) model (Shih et al. (1989) and Shih 
(1996)). This coupling will be noted respectively 
model 1, model 2 and model 3.  
We note also that the classic popular model of 
Zeman and Lumley (1976) is the only model 
retained for the third contribution of pressure-strain 
correlation and pressure-scalar gradient correlation. 
These models are written as follows: 








 −+−= ijlljiijij uuuC δρβρβρβφ
3

2
3

3              (58) 

5.03 =C                                                              
2

3
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Where iβ is the term of gravity

0ρ
β i

i

g= .                                                                                                                                                           

3.3 Non-dimensional Equation 

With the goal of getting non-dimensional equations, 
a closed system of non-dimensional parameters can 
be obtained by casting basic Eqs.(4), (5) and (6) in 
non-dimensional form and by introducing the non-
dimensional time Stτ = , the components 

32
ijji

ij k

uu
b

δ
−=  of the anisotropic tensor b 

(Schiestel (1997)) and the non-dimensional shear 

number 
KS

ε
 are classically (Jacobitz et al. 

(1999b)) retained for the kinematic field. The 
component of the non-dimensional turbulent scalar 

flux (Petterson et al. (2000))
0

g uiFi kS

ρ
ρ

=  and the 

ratio 
K

K
ρη=  of potential energy to kinetic energy 

substitute respectively the turbulent scalar flux and 
the variance of scalar to get a closed form of 
differential equation for the scalar field. 
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It is essential to note here that the expressions of 

models of ijφ and ρφi  let us to write the quantities 

kS
ij

2

φ
 and 

kS
i

0ρ
φ ρ in terms of non-dimensional 

parameters bij, Fi, 
kS

ε  andη . 

In this step of our work, numerical integration of 
the above differential equation is started. 
Discussions of obtained result will make the object 
of the following sub-sections. 

4. NUMERICAL INTEGRATION 
AND RESULTS 

A fourth order Runge-Kutta method is used for 
integrating the non-dimensional system of ten non-
linear differential equations submitted to the initial 
conditions of the results of the Direct Numerical 
Simulation of Jacobitz (2002) and Jacobitz et al. 
(1998). A comparison between obtained results and 
results of the Direct Numerical Simulation (DNS) 
of Jacobitz  (1998) forms a part of this section.   

4.1 Influence of the Gradient Richardson           
Number 

Numerical integration is conducted to long time 
evolution τ=St. Evolution of the principal 
component of anisotropy b

12
 as a function of non 

dimensional time St is presented in Fig. 2. A 
general tendency to asymptotic equilibrium states 
has been observed for b

12 as long time evolution 
τ=St.  

3
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2,12 εεε
εεε

C
k
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d
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In Table 1, asymptotic equilibrium values of b
12

 for 
differents values of Richardson number Ri=0.2, 
Ri=0.4, Ri=0.6 and Ri=1.0 and ε/KS=0.5 reached 
by models are presented: 

Table 1 Asymptotic equilibrium values of (b
12

) ∞ 

for ε/KS=0.5 
(b

12
) ∞ 

Models Model 
1 

Model 
2 

Model 
3 

DNS 
of J 

 
Ri=0.2 
Ri=0.4 
Ri=0.6 
Ri=1 

 
-0.124 
-0.118 
-0.115 
-0.110 

 
-0.134 
-0.127 
-0.125 
-0.119 

 
-

0.0783 
-

0.0739 
-

0.0712 
-

0.0701 

 
-0.13 
-0.11 
-0.115 
-0.1 

 

 
The three models confirm the existence of an 
asymptotic equilibrium states for the component 
b

12
, for different values of Richardson number Ri 

and ε/KS=0.5. However a principal result is 
observed and showed the positive contribution of 
model SSG on the prediction of equilibrium state of 
the field scalar: 

In a previous work (Melki et al. (2010)) the LRR 
model retained on its individual for both kinematic 
and scalar fields has not predicted an asymptotic 
equilibrium states for any dimensionless 
parameters. Here the coupling between the SSG 
model for kinematic field and LRR model for scalar 
field (SSG-LRR, model 1) indicates existence of 
asymptotic equilibrium states for b12 for all retained 
values of Richardson number Ri.  

This result constitutes the first positive contribution 
of the SSG model when it is coupled with LRR 
model. In Fig.2, also we see that the coupling 
between the SSG and LRR (model 1) indicates the 
best agreement with the values of  DNS of Jacobitz, 
compared with values predicted by model 2 ( SSG-
CL) in one hand and model 3 (SSG-SL) in the other 
hand for non dimensional time τ=St  greater than 
25. In the first period corresponding to St less than 
25, no agreement between predictions of models 
and values of DNS of Jacobitz has been observed. 

An excellent agreement between the prediction of 
the model 1 and the values of DNS of Jacobitz is 
observed. A qualitative agreement between the 
predictions of two other models 2 and 3 on one 
hand and the results of DNS of Jacobitz on the other 
hand is also observed. The model 2 shows a good 
agreement with these values only for dimensionless 
time τ greater than 30 ( 30τ ≥ ). 
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 

 
 

Fig. 2. Time evolution of the component b
12 for 

Ri=0.2 and ε/KS=0.5 
Thereafter, we present the influence of the 
Richardson number Ri in one hand and the 
influence of the initial non-dimensional number 
ε/KS in the other hand respectively on the principal 
component of anisotropy b

12
, on the rate of 

dimensionless shear number ε/KS, on the turbulent 
kinetic energy K and the potential energy K

ρ
 for the 

three retained models. 
 
 
 
 
 
 
 
 
 
 

                             
 

(3-a) 
 
 
 
 
 
 
 
 
 
 
 
 

(3-b) 
 
 
 
 
 
 
 
 
 
 
 
 

(3-c) 
Fig. 3. Time evolution of the component b

12 for 
different values of Ri. 

3-(a) model 1, 3-(b) model 2; 3-(c) model 3 
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Figures 3-(a), 3-(b) and 3-(c) show the evolution of 
the principal component of anisotropy b12 as a 
function of the non-dimensional time St=τ, obtained 
by the model 1, model 2 and model 3 respectively 
and for different values of the gradient Richardson 
number. Three models confirm the existence of an 
asymptotic equilibrium states for the component 
b12.  Three models indicate also that (b12)οο grows 
with Ri growing from weak stratification (Ri=0.05) 
to strong stratification (Ri=3.0). This result is not in 
contradiction with our previous results (Bouzaiane 
et al. (2004)). We note also that the asymptotic 
equilibrium state for the model 1 and the model 2 
are reached very quickly compared to the prediction 
of the model 3 which predict an equilibrium state 
from St=τ=48.  

4.2 Influence of the Initial Value of ε/KS on    
Equilibrium State of b12 

In Table 2, the equilibrium values of b12  predicted 
by several retained  models and for results of DNS 
of Jacobitz et al. (1999b) are presented for  values 
1/2, 1/6, 1/10 and 1/14 of  ε/KS, and for 
Ri=0.15.The principal result presented in Table 2 is 
surprising, since three models show a growth of the 
absolute value of (b12)οο for a decrease of the initial 
value of (ε/KS). This result is in a clear 
contradiction of the result of DNS of Jacobitz. 

Table 2 Asymptotic equilibrium values of (b12) ∞ 
for Ri=0.15 

(b12)∞ 

Models Model 
1 

Model 
2 

Model 
3 

DNS 
of J 

 
ε/KS=1/2 
ε/KS=1/6 
ε/KS=1/10 
ε/KS=1/14 

 

 
-0.127 
-0.134 
-0.136 
-0.137 

 
-0.136 
-0.141 
-0.145 
-0.147 

 
-

0.0797 
-0.111 
-0.128 
-0.138 

 
-0.1 

-
0.075 
-0.05 
-0.04 

 

In Figs.4-(a), 4-(b) and 4-(c) are presented 
evolutions predicted by the three retained models, 
model 1, model 2 and model 3. Asymtotic 
equilibrium states are reached for τ=St greater than 
20. The asymptotic value of the principal 
component of anisotropy b12 decreases strongly 
when the initial value of the shear number is 
increased. An excellent agreement for ε/KS=1/2 for 
the three models and the values of DNS of Jacobitz 
et al. (1999b) is observed. Model 2 shows a good 
agreement with these values only for a 

dimensionless time τ ( 20≥τ ). 
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Fig. 4. Time evolution of the component b

12 for 
different values of ε/KS and Ri=0.15. 

4-(a) model 1, 4-(b) model 2, 4-(c) model 3  
 
 

4.3  Growth Rate of the Turbulent Kinetic 
Energy 

An interesting other non dimensional parameter is 
generally introduced to characterize the time 
evolution of the turbulent kinetic energy. The 
growth rate of turbulent kinetic energy is 
mathematically defined as: 

                         (70)                                                                                                                            
                                                                                                   

 
It is clear that the growth rate γ depends on the 
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buoyancy flux 
B

SK
, and the normalized dissipation 

rate  
SK

ε . 

Figure 5, shows the evolution of the growth rate γ 
of the turbulent kinetic energy. An asymptotically 
constant value of γ is reached for non dimensional 
time greater than 20 (St >20). Model 1 shows an 
over estimation of asymptotic equilibrium states of 
γ, whereas, the two other models show a very good 
estimation of values of DNS of Jacobitz for τ 
greater than 30. 
 

 
 
 
 
 
 
 
 

 
 

Fig. 5. Evolution of the growth 
rate γ for    Ri=0.15 and for ε/KS=0.2 

 
In Figs.6-(a), 6-(b) and 6-(c), we show the evolution 
of the non-dimensional shear number ε/KS for 
Ri=0.15 and for differents initial values of ε/KS, 
according to  the three retained second-order 
models  model 1, model 2 and model 3, 
respectively. We notice that predictions of the three 
models tend towards to equilibrium states and that 
when the non-dimensional number ε/KS increases 
from ε/KS =1/20 to ε/KS= 1/2, the ratio of non-
dimensional shear ε/KS increases too. The 
asymptotic values of the non dimensional shear 
number ε/KS decrease as the initial value of the 
shear number is increased. The asymptotic values of 
the normalized dissipation rate ε/KS decrease as the 
initial value of the shear number is increased. 

The dependence of the non dimensional shear 
number ε/KS for non dimensional time St is shown 
in Fig.7 for the three retained second-order models 
and compared with values of DNS of Jacobitz et al. 
(1999b) for Ri=0.15 and ε/KS=1/6. 
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Fig. 6. Evolution of the normalised dissipation 

rate ε/KS for Ri=0.15, 6-(a) model 1, 6-(b) model 
2, 6-(c) model 3  

 
   
 
 

 
 
 
 
 
 
 

 
 

Fig. 7. Evolution of the normalized dissipation 
rate ε/KS for Ri=0.15 and ε/KS=1/6 

 
The asymptotic equilibrium behavior of non-
dimensional parameters b12, , B/ε and ε/KS allows 
us to write the time-evolution equations of the 
turbulent kinetic energy K and ε in 
the following form:   

 
                                   (71)                              
 

When τ → ∞, the non-dimensional parameters 
approach constant values and the above equation 
becomes a first-order differential equation with 
constant coefficient and take the following form: 

 
                                                      (72) 
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 Where:  2 12 3b FK
SK

ε
α = − −  

Finally, as τ → ∞ we have K = K(0) exp( Kα τ ). 

4.4 Evolutions of Ratio K/E and K
ρ/E 

The influence of the Richardson number Ri on the 
dimensionless ratios K/E and K

ρ/E is also analysed. 
Figure 8, shows the influence of gradient 
Richardson number on K/E and K

ρ/E, we see here, 
that at high stratification corresponding to Ri=1.0 
and Ri=2.0, the ratio of potential energy to total 
energy Kρ/E and kinetic energy total K/E have a 
tendency to reach the numerical value  0.5 for 
τ=St>40. 

 
 
 
 
 
 
 
 
 
 

(8-a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(8-b) 
 
 
 
 
 

 
 
 

 
     

 
(8c) 

Fig. 8.Time evolution of the ratios K/E and  
K
ρ
 /E, Ri=2.0 and Ri=1.0  

8-(a) model 1, 8-(b) model 2, 8-(c) model 3  

We add also that at high stratification (see Fig.      
8-(a)) the asymptotic equilibrium values of K/E and     
K
ρ
 /E are slightly different from the mean value 0.5. 

The model 1 shows an equal partition of the total 
energy (E=K+Kρ) between the turbulent kinetic 
energy and potential energy. These Figs.8-(a), 8-(b) 
and    8-(c), confirm the existence of equilibrium 

states for three models summarized in Tab.3. We 
also notice that when the Richardson number Ri 
increases from 1.0 to 2.0, the ratio of kinetic energy 
decreases whereas the ratio of potential energy 
increases progressively. This prediction is coherent, 
since when Ri grows from 1.0 to 2.0, the effects of 
scalar dominates the effect of shear.  
 
Table 3. Asymptotic equilibrium values of (K/E) 

∞ and (Kρ/E) ∞ 
         

Ri Model 
1 

Model 
2 

Model 
3 

DNS Model 
1 

Model 
2 

Model 
3 

DNS 

0.2 0.88 0.907 
 

0.958 
 

0.84 
 

0.200 
 

0.0928 
 

0.0820 
 

0 .27 
 

0.4 0.703 0.826 0.872 0.83 0.297 0.174 0.128 0.17 

0.6 0.648 
 

0.776 
 

0.822 
 

0.82 0.352 
 

0.224 
 

0.178 
 

0.18 
 

1.0 0.590 
 

0.723 
 

0.747 
 

0.79 
 

0.410 
 

0.277 
 

0.253 
 

0.21 
 

2.0 0.539 0.661 0.631 0.75 0.461 0.339 0.369 0.25 

 

 
 
 
 
 
 

 
 
 
 

 
Fig. 9.Time evolution of the ratios K/E and K 

ρ
/E, Ri=0.2 

 
In Fig.9, the time evolution of the dimensionless 
ratios K/E and K

ρ
 /E are presented. Here E is the 

total energy. For the ratio K/E, it is clear that model 
1 ensures the best agreement with the results of the 
DNS of Jacobitz Jacobitz (1998) for non-
dimensional time greater than 40 (τ≥  40) and a 
qualitative agreement between the predictions of 
two other models (model 2 and model 3) on the one 
hand and the results of DNS of Jacobitz (1998) on 
the other hand is also observed. For values of 
dimensionless time greater than 40, model 2, model 
3 and model 1 show respectively an 
underestimation of 15%, 30% and 35% of the 
values of DNS of Jacobitz. For the ratio K

ρ
/E no 

good agreement has been observed between values 
predicted by the retained second-order models and 
the values of DNS of Jacobitz (1998).   
 
5 CONCLUSION 

In this study we have investigated a stably stratified 
turbulence submitted to an horizontal shear. Two 
approaches have been retained. A first one is 
analytic and is based on a linear solution when non 
linear effects of pressure and viscosity are neglected 
in time evolution equation. A Laplace Transform 
has been used for integrating ten linear differential 
equations. Obtained solutions have confirmed at 
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long time evolution the existence of asymptotic 
equilibrium behavious for dimensionless kinematics 
and scalars parameters. 

The second approach is a numerical one and is 
based on a second-order modeling of pressure-strain 
and pressure-scalar gradient correlation, besides, 
time evolution equation of dissipation rates. The 
SSG model has been retained for pressure-strain 
correlation and dissipation equation, whereas three 
of the most known models are retained for pressure 
scalar gradient correlations. Equations are castled in 
non dimensional form when non dimensional 
parameters are introduced for both kinematic and 
scalar fields. A fourth order Runge Kutta method 
has been used to integrate three non linear 
differential equations submitted to the initial 
condition of the results of DNS of Jacobitz et al. 
(1999a).  

The principal results obtained in this work are: 

- Asymptotic equilibrium behavior of dimensionless 
kinematic and scalar parameters have been 
confirmed by linear solutions obtained when non 
linear effects of pressure and viscosity have been 
neglected according to the results of DNS of Holt. 
-Analytic equilibrium solutions are functions only 
of the initial conditions and the gradient Richardson 
number Ri. 

- The existence of asymptotic equilibrium states of 
dimensionless kinematic and scalar parameters for 
the three retained second order models are generally 
observed. 

-The Coupling between the SSG model for the 
kinematic field and the LRR model for the scalars 
has been of a big contribution in predicting 
asymptotic equilibrium states. In fact the LRR 
model retained in its individual for both kinematic 
and scalar fields does  not predict a such behavior 
(Bouzaiane et al. (2003c)). 

- For the influence of initial value of the non 
dimensional number ε/KS on equilibrium state of 
b12 , no agreement between results of the three 
retained second order models and results of DNS of 
J have been observed.  

- Model 1 (SSG-LRR) shows the better agreement 
with the results of DNS of Jacobitz for the 
predictions of the component b

12 of the tensor of 
anisotropy of Reynolds and the ratio of kinetic 
energy to total energy K/E. 

- The Speziale, Sarkar and Gatski (SSG) model has 
been of a considerable contribution in the modeling 
of turbulence by improving predictions of different 
models. 

We think that the present work can be extended 
according to several directions. A correction to 
models in a similar manner as a previous work of 
Hechmi et al. (2012) to improve effects of the non 
dimensional number ε/KS in turbulent parameters 
can make a coherent extension to this work. The 
study of the coupling effects of stratification and 
rotations in turbulent parameters, by the two 

different methods, seems also an important 
direction of investigations.  
It is important here to note that stratification 
turbulence is present in several engineering and 
environmental application. Examples are flow over 
topography, river in flow into the ocean or effluent 
discharge by power plants (Jacobitz (2002)).   
 
Appendix A: Coefficients of analytical solutions 
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