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ABSTRACT

In this work, the asymptotic equilibrium behaviairdimensionless parameters in stably stratifietdulence
submitted to a horizontal shear is studied usirmdifferent methods. The first one is an analytetmod and
is based on linear solutions obtained when noraliredfects of pressure and viscosity are neglectée.
Laplace Transform is used for integrating differ@nsystem. The principal result of this first paft our
work is the existence of asymptotic equilibriumtasaat high shear for all non dimensionless pararseThe
second method is a numerical one and is basedseocnd-order modeling of equations. The SpezialkaBa
and Gatski (SSG) model is retained for pressumgrstrorrelation and dissipation time evolution eopra
whereas, three of the most known second-order ra@delretained for the scalar field. The princiault of
this second part is the big contribution of the S8@ilels for predicting asymptotic equilibrium staté non
dimensional parameters.

Keywords: Stably stratified turbulence, Second order mqdetymptotic equilibrium behavior, Horizontal
shear

NOMENCLATURE
b anisotropic tensor of Reynolds a thermal diffusivity
C, specific heat at constant pressure M dynamic viscosity
g constant of gravity v kinematic viscosity
K turbulent kinetic energy A viscosity ratio
P pressure T non dimensional time
p fluctuation of the pressure dj  Kronecker Symbol
Ri dimensionless Richardson humber .
s mean shear Yo fluctuation of the scalar
S, mean scalar gradient @ density of reference
T ,i gradient of the scalar p2 Variance of sca'ar
t time &£ terms of dissipation of turbulent kinetic ege
u, i-th component of the fluctuating velocity £, terms of dissipation of variance of the scalar
Uj i-th component of mean velocity g  terms of dissipation of tensor of Reynolds
Uj Uj reynolds stress tensor c terms of dissipation of the scalar flux tudmi
ip
uj o turbulent flux of the scalar #ij  terms of pressure-strain correlation
Up q gradient of mean speed & p terms of pressure- scalar gradieatrelation

Xj component of an orthonormal Cartesian
coordinate system
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1. INTRODUCTION whereas their castling in non dimensional forms and

. numerical integration makes the object of section 5
Turbulence phenomena are frequently met in thea peculiar attention will be accorded in this senti
fluid flows and do not constitute an intrinsic 5i5q to the prediction of the asymptotic equilibmiu

property of the fluid. It is characterized using a gtates at long time evolution. Principal obtained
whole of observation on the state of the movement.regits in this work, are summarized in section 6.

For example a turbulent flow tends to qualify aesta
of agitation of the movement where speeds move in
a way apparently irregular, disordered and chaotic. 2. MATHEMATICAL
In order to envisage the behavior of the turbulent CONSIDERATIONS

flows, and for understanding well the complex |5 an orthonormal Cartesian coordinate system of
turbulent processes of geophysics flows in the components (X X,, Xs), the flow to be considered in

atmosphere and_oceans, several aumdmﬂ et al the present work is a two dimensional (2-D)
(1992) andJacobitzet al (1997)were interested to homogeneous turbulent shear flow of a viscous

the analysis of different aspects of the coupledincompressible  fluid. The mean  velocity
effects of a stable stratificatiofBouzaianeet al

(2003b))and a shear for a homogeneous turbulence.
During the last yearsGerz et al (1989) were oUq )

interested to the study of the direct digital 5_- - (Jacobitz et al (1999a)) whereas the
simulations for a homogeneous turbulence B
_submitted to a verf[ical shear. They Sh_OWEd the geatar field presents a constant mean graee&rt.
influence of the Richardson number Ri on the X3
turbulent parameters sizesKomori et al (1983)

studied the case of a laminated flow in an opened

water channelltsweire et al (1988) showed the
importance of the Richardson number Ri on the %
evolution of turbulence. A

J:(Jl,o,o) has a constant horizontal shear rate

Xz
Turbulence in a vertically stably stratified fluidth
uniform non vertical or horizontal shear has been
considered in only a few investigationacobitz U
and Sarkar (1998performed a series of mean
stream-wise velocity in which the andlebetween
the gradients of mean density and mean stream- p

wise velocity was varied fromp=0 to 6?:%.

» X

Laboratory experiments of turbulence in a stradifie ~ Fig. 1. Sketch of the mean density with vertical
fluid with uniform horizontal shear have not been gratification and the mean velocity with
performed. However horizontal shear in horizontal shear

experimental studies is present of fronts in a

rotating stratified fluid (Chebbi et al (2012)) 2.1 Fundamental Equations

stratified jetgCaldwell (1987)) ] )

The study of an incompressible turbulent shear flow
No many previous works have been interested t0js based on the continuity equation, the three-
the horizontal shear except the result of DNS of dimensional unsteady Navier Stokes equation and a
Jacobitz and Sarkar (19998jd Jacobitz (2002)  transport equation for the passive scalar. In the
this is surprising since the horizontal shear ogcur following, x (with i=1, 2, 3) denotes the ith
frequently in environmental and many engineering component of an orthonormal cartesian coordinate
applications. Examples are flow over topography, system. According to the classic Reynolds
river in flow into the ocean or effluent dischatme decomposition (Cadiou (1996a)) the dependent

power plants (Jacobitz (2002)) For our : —— T 5
knowledge, no previous works has been dedicatedvamjlbles velocit}j , density o andﬂesiureP
to second-order modeling of the stably stratified are decomposed into mean part$j, o and
turbulence submitted to a horizontal shear.
Furthermor no coupling between SSG model and
others models for scalar fields are known to
authors. This constitutes the principal motivatain . T = .

our work. Uj =Uj +4 . p=p+p, P=P+p

. . . S The decomposition of the dependent variables is
In section 2 equations of motion used in this StUdyintroduced into the equations of motion, and the

are introduced and the transports of second-order, . . . )
moments are derived. In section 3, analytical following evol_utlon e_quatlons for the fluctuating
solutions in the case of high shear when non Iinearparts are obtaine(Cadiou (19960)

effects are neglected have been obtained. Solutions®Yi — @
are investigated to study the asymptotic behavior a 9X;

long time evolution of non dimensional parameters.

The second-order modeling of transport equations

of second moments makes the object of section 4

Panda fluctuating parts,up and p.
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Ju ou Ju
- ! ! = dK
ot "Mgx, TSN gy TS @ =P -B-e (16)
_iaip+v azUi _ipb'
Po 0 X X, 0%, P, " Where P is the turbulent production term due
ap ap ap __ 9p (3 0
o +u, E +SX, Txl +S,u; =a A%, 0%, ®) tothe horizontal sheé)[ag 1
2
2.2 Transport Equations P=-Syu 7

In this section, transport equations for the

i B the buoyancy term:
components uj Uj of the Reynolds stress, the

S 9
componentsuj o of the turbulent scalar flux, the B'E%p (18)
variance of scalauz)2 are obtained from basikeqgs.
(1) to (3): And ¢ is the dissipation term due to molecular
effects:
du, u, =P -B, + @ —¢ (4) U ou
ae T £ axic Ok (19)
Hered _ 0 ;- 0 s the total time derivative. k Ok
k
7‘“ ot 0%, Classically, the potential enerng is computed
du p _ P,-B,+@,-¢, (5) from the density fluctuations and is written as:
dt
dp® 19 2
2 op, -2, O K073 05, 7 (20)
Where terms denoted by P are terms of productionThe equations for the components of the Reynolds
due to mean kinematic and scalar gradients: ‘ 5 T T g — — —— ¢ th
P stressup“, up<, uz, ujua, uiuz uosug, of the
=78 1 0 78U U 9 % turbulent kineti Uil | th t
— — urbulent kinetic energy =" Y4 , the components
o =751k P =SU X fthe density fluxi3, 555, and the equation of
B — of the density fluxu; p, upp, uzp @nd the equation o
P, =-2S,pu, )

scalar variancg?, are consequently obtained.

Terms denoted by B are terms of gravity: . . .
Y g y Solutions of the obtained equations are now

B, = i(ui P35 +U, ,05is) (10)  analysed firstly when non-linear effects of vistpsi
o and pressure according to the DNS resultdalf et
g =9 ?5 (11) al. (1992) are neglected at high shear. This will be
ip T i3

) detailed in the following sub-section.

Qj andwlp are respectively terms of pressure-strain 23 Linear Solutionsat High Shear

1 (ou ou) 1 ap (12) Holt et al (1992) non Ii_ngar effects of vi_scosity
g :p[u+i] @, = —p—— and pressure have negligible effects at high shear
Po (0% 0% Po  0X, (Holt et al (1992) and Bouzaiaret al (2003a)) If
It is essential here to note that these last texrtas  we take into account this result in the transport

the more complex terms to be mode(@thamri et Egs.(4), (5) and (6)terms denotedp and £ are

correlation and pressure-scalar gradient correlatio

al. (2011) and Cadiou (1996a)) neglected. We obtain a system of ten first order
Finally, term&fij' gip and gpp are terms of coipled linear differential equations.
dissipation due to molecular effects: M:_ZS@ (21)
P w L
i 2
ax, X, du® _, 22)
ap ou at
&, = (a+v)a—— 14 5 _
X, OX, TS:_ 930 (23)
A
0p 0p (15) —
£ =—20  —— _
w %, 0%, Ltét% -5y (24)

While considering the trace d&q.(4), we get the
time evolution equation of turbulent kinetic

energy = Ui Yi
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-1 @5) wAlr)=ACHR 7]+, SH/R7) (39)
walr)=A,ct2/R 7)+B,st/R 7] (40)
9. (26) —
it p 7 Pr)=c,+ A,Ch(z\/ﬁ r)+ Bpsr{zﬁ r) (41)
K_o— g— (27)

PT ar - = =
dt
o Q= U+

LS oS @8

T - 29) o =G, +AT+Br+ QO*G\/_RT)+

—2F=-g

p W2 W3
dt ES{/ R+ Fdfe/ R+ Hr/ H

du — — (42)

#’0 =-5, ug - iPz (30) Here the coefficients A, B, C, D, E, F, H and Kgse
Po appendix A for detailed forms of these coeffici¢nts

are functions of initial conditions of turbulent
d o? _ —ZSpu37p 31) paramete;s and Richardson number
) =i7§ =— (Rohret al (1988)) where S is
In a previous workBouzaianeet al (2003c)have P S S

proposed linear solution for homogeneous shearedhe shear rate,Ny the Brunt-Vaisala frequency
turbulence submitted to rotation. The same method

used byBouzaianeet al (2003c)andChebbi el al. N? =-9% and 7=Stis the non dimensional

(2012)is used in the present work. i Po ) . .
We investigate solutions oEgs.(4), (5) and (6 _tlme. _The analytic solutions WI|| now be
when non-linear effects are neglected. investigated to study the asymptotic behaviour of

Laplace Transform of a function f, defined for a dimensionless parameters at long time evolution.
This will make the object of the following sub-

o0}
position x by:|_(f (x))S:j f(x)e SXdx isused and  section.
0

following solutions parameterized by the gradient 2.4 Asymptotic Behaviour of Non

Iiichardson number Ri (Ri >0) are obtained: Dimensional Parameters
20\ _ 2
ui (1) =Gyt A+ Byg DJP{\/ET)J“ (32)  We begin by the study of the asymptotics behavior
sr(\/g) S(QJT?) of non dimensional kinematic parameters, which
7|+ d
AR ARE ' are the componenkgl, b22, b33,b12,b13 and
lE(T)=C22 (33) b,s0f the anisotropy tensor of Reynolds
5 u. u:
U%(T)=C33+F333VE?W/7$TJ+ K{g(f%/TWj (34) (b = Ll _qu ). After we extended, our study
2K 3
— 35 to the scalar dimensionless parameters, namely the
uyup(7)=Cypt A g+ Blé:'E\/T?‘ Tj (35) _ B _
ratios of buoyancy to production term-, the ratio
I(r):c +AF+B C){\/?r)+ P
13 137 1" P1d ' of the potential energy to kinetic energy
— >
D13Sh[ﬁrj+ ElgcrE\/Tar} 19 /» _ kp, Y1P and the correlation

({77 el ) "Tan05 KK

(36) coefficient el (Where ui:\/u:lz, p = /?).
uip’

L&%(T):Q3+A2§I‘VRT)+%§4\/§T) (37) Expressions of all dimensional parameters are
_ easily deduced from the above solutions.
Ulp(T):Cm’“ApC'(\/T?T)* At long time evolution, corresponding to

7=St- o, solutions (32-42) lead to the simple
Blf’sr(\/?'{ T)+ 7 S("/TR)+ relation of dimensionless parameters:

e o) s s 7 [
1 T im | ST g s
(38) q q q

(43)
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2
(b ) _ us, 1 1
22 T lim | > T, TS
® rw|g? 3 3
7
(555) Ys ] _Fss*Kasz 1
8370 = MM 47 3 Fq +Hq 3
u u
(12). lim [ 172]:0
L1 -
K
(b13) = jim | 188 |- 13
® 1o g2 | FqtHg
u-,u
2U3 _
(bza)oo lim —% =0
e
(Ej = lim | L2 |- 9 A * By
PJ. - \ Po U1U35 poS K13
2
(/7) g p g Ap+Bp
w ™ lim | 5|7
r-o\ Py q Pg Fq tHq
upp upp Eip *F1p
g im | =2 =
2P ) To@\Upp) A2p*B2p
u p _ up _ Elp+Flp
we | M I TS 1
- 2 2 2
® w2222 | Fy2[A, 8,2

The obtained expressions(bll) ,
(o]

(bsa)w' (blz)w' (bl )w' (b23).,

(7)en. | 22 we
Uy

and [
[e4] ulp

0

3, pp. 401-413, 2014,

(44)

(47)
(48)

(49)
(50)

(51)

B

€

)

are only functions of

Second-order modeling remains one of the more
important approaches to understand and study
geophysical turbulent flows and complex
configurations of turbulent flow¢Khaleghi et al
(2010)) In the following sub-section, a brief
introduction to second-order modeling followed by
the principal second-order models is presented.

3.1 Second-Order Modeling

In this part, second-order turbulence closure nmdel
are retained to close transpé&qs.(21) to (31)The

pressure-strain correlatioqo“- and the pressure-

scalar gradient correlationjolp are the principal

terms to be modeled in evolution equations of
Reynolds stress and turbulent scalar flux. These

correlations¢Ij and Qp are classicaly separeted
into three contributionfBouzaianeet al (2004))
1 2 3
.. =@. +@. + @
¢IJ ¢LJ ¢|J ‘?J
2

(53)

3
+¢I 0
Here, terms noted 1 are terms of return to the
isotropy, they characterize the non linear
mechanism of interaction between turbulent
fluctuations. The terms 2 represent the interaction
between mean and turbulent flows, they
characterize the linear terms .Finally, the terms 3
are terms due to buoyancy effe(@ouzaianeet al
(2004)) During the two past decades several
models have been presented by authors. Perhaps the
Speziale Sarkar and Gatski model for pressure-
strain correlation is among the most interesting.on
For its great success during the last decade, $i& S
model (Spezialeet al. (1990))is retained in this
work. We precise here that to our knowledge this
model has not been extented to scalar effects
present in our stratified turbulent flow. A coumin
between the SSG model retained for kinematic field
and three of the most known models for scalars
field is proposed and makes the motivation of this

b =0yt (54)

constant coefficients A, B, F, H, Kand E part of our work.
presented in appendix A. These solutions confirm
the existence of an asymptotic equilibrium behavior
at long time evolution of dimensionless parameters
(Ben Abdallahet al (2005)) byy, by bsz bio, bys,

B 7 up E
bos,—, we, “1F andp=—~F .
235 U n K

up uip ’

Furthermore, they

3.2 The Speziale Sarkar and Gatski (SSG)
model

This model concerns only kinematic turbulence,
Spezialeet al (1990) separated the part of the

show that these states are only functions of theModel is written in the following form:
Richardson number Ri and the initial values of

dimensionless parameters. This first approach is

only a qualitative one. A quantitative analysigtof
behaviour of dimensionless turbulent parameters,
based on a second-order modeling of the behaviou

of dimensionless parameters will be developed in "l

the following sections.

3. SECOND-ORDER

MODELING FOR

NON

DIMENSIONAL EQUATIONS

405

return to the isotropy from the linear part. This
_ 1 2

% =4 4

r, 1 2 %

% =Caty +3C-AG Ty ) (59)

Iy =byby C, =34
@' =CbSub, 5 (C (BB CIS +
2GS .S 20,8 A) GO, )
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(0 dbyp ¢ & (b 1)(% +F +igj (61)
WhereC2 =18 C3=08 C,=125 dr ks 3k P22t ) %P2t et
C5=04 Cg3=13 dby, =-[b22 +*j+&+2b122+ Fb, +(£]b12 (62)
Spezialeet al (1990)supplemented their models of ~ d7 3) 2ks kS

the pressure-strain correlation by the following

model of the equation of viscous dissipation db, _ 45 ( L £ ) (63)
—2=-p F +2 42 —
dT 23 2 1 2kS b.L2b.L3 kS b13
de _ £?
€ =-2c,fp,U,,5-C,, 5 +C, 67) G 1o, &, (F +£ )y (64)
dt g Z K dr 2 2kS bl2 3T kg )
Where C,, =145 C,, =19 dR _ -SF, -2Rb, + 22| 9 +|:[2|ol +F+E ]
This model as mentloned is not extended to scalars dr 8 ook 2 kS
effects, it will be coupled respectively to thessia (65)

Launder, Reece and Rodi (LRR) modehunderet dE 9

al. (1975), Cadiou (1996h)jhe Craft and Launder dT2 =-2Rb,; + <2 [ k)+ F [Zb12 +F+ kS)

(CL) model (Craft el al. (1989), Laundeet al Po

(1996) and Launder (1999))and the Shih and (66)

Lumley (SL) model(Shih et al (1989)and Shih dF, _ P B £
(1996)) This coupling will be noted respectively dr 2R (b 1)+ [ kj+F[2b”+F +HSJ
model 1, model 2 and model 3. (67)
We note also that the classic popular model of e

Zeman and Lumley(1976) is the only model o - -F, +/7(2b12 +F —) (68)
retained for the third contribution of pressureaistr dr kS

correlation and pressure-scalar gradient correlatio d [ ¢ £ e )
R C

These models are written as follows: dr K
- Ut B0 0-280 0 58
% —‘Cs(ﬁjua prAY P AU Pdu‘j (58) 4:21(1—023)(6] F +[ 5 j(Zb +F)
C;=05 It is essential to note here that the expressidns o
@, =-C,, 50" (59) models of ¢} and ¢}, let us to write the quantities
C,, =05 ;
* % and % in terms of non-dimensional
. S
Where 3 is the term of gravity3 = 9 2kE PokS
o parametersp F, £ andy.
ks
3.3 Non-dimensional Equation In this step of our work, numerical integration of

the above differential equation is started.
With the goal of getting non-dimensional equations, Discussions of obtained result will make the object
a closed system of non-dimensional parameters carmf the following sub-sections.
be obtained by casting badig|s.(4), (5) and (6

non-dimensional form and by introducing the non- 4 NUMERICAL INTEGRATION
dimensional time 7=St, the components ) AND RESULTS

b _uy _9 of the anisotropic tensor b
! 2k 3
(Schiestel (1997)and the non-dimensional shear

A fourth order Runge-Kutta method is used for
integrating the non-dimensional system of ten non-
linear differential equations submitted to theialit
number £ are classically (Jacobitz et al conditions of the results of the Direct Numerical
Simulation of Jacobitz (2002)and Jacobitzet al
(1999b)) retained for the kinematic field. The (1998) A comparison between obtained results and
component of the non-dimensional turbulent scalarresults of the Direct Numerical Simulation (DNS)

of Jacobitz (1998jorms a part of this section.
flux (Pettersonet al (2000)) :i% and the
20

K, 4.1 Influence of the Gradient Richardson
ratio p=—+~ K of potential energy to kinetic energy Number

substitute respectively the turbulent scalar flada  Numerical integration is conducted to long time
the variance of scalar to get a closed form of gygjution =St. Evolution of the principal

differential equation for the scalar field. component of anisotropy, pas a function of non
dimensional time St is presented KFig. 2 A
%:_Zbu A £, (bu j[2b12+F +7j general tendency to asymptotic equilibrium states
dr 2kS  3kS kS has been observed for,bas long time evolution
(60) 1=st.
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In Table 1 asymptotic equilibrium values of pfor

. K K —— Moddl 1 Model 2 —— Model 3
differents values of Richardson number Ri=0.2, * DS
Ri=0.4, Ri=0.6 and Ri=1.0 andKS=0.5 reached
by models are presented: a1
Table 1 Asymptotic equilibrium values of (b,,).. g . ™ i
for ¢/KS=0.5 .
(b)) '
Models Model Model Model DNS
1 2 3 of J .
Ri=0.2 -0.124 -0.134 - -0.13 g
Ri=0.4 -0.118 -0.127 0.0783 (?111}3
Ri=0.6 -0.115 -0.125 § hp . . .
-0.1
Ri=1 0.110 -0.119 00739 Fig. 2.T|meev_olut|0n of the component b, for
3 Ri=0.2 and ¢/K S=0.5
0.0712 Thereafter, we present the influence of the
00'701 Richardson number Ri in one hand and the
: influence of the initial non-dimensional number

The three models confirm the existence of an
asymptotic equilibrium states for the component
b,., for different values of Richardson number Ri

12

and ¢/KS=0.5. However a principal result is
observed and showed the positive contribution o
model SSG on the prediction of equilibrium state of

the field scalar:

In a previous workKMelki et al. (2010))the LRR
model retained on its individual for both kinematic
and scalar fields has not predicted an asymptotic
equilibrium  states for any dimensionless
parameters. Here the coupling between the SSG
model for kinematic field and LRR model for scalar
field (SSG-LRR, model 1) indicates existence of
asymptotic equilibrium states fogtfor all retained
values of Richardson number Ri.

This result constitutes the first positive conttibn

of the SSG model when it is coupled with LRR
model. In Fig.2, also we see that the coupling
between the SSG and LRR (model 1) indicates the
best agreement with the values of DNS of Jacobitz,
compared with values predicted by model 2 ( SSG-
CL) in one hand and model 3 (SSG-SL) in the other
hand for non dimensional time=St greater than
25. In the first period corresponding to St lesanth
25, no agreement between predictions of models
and values of DNS of Jacobitz has been observed.

An excellent agreement between the prediction of
the model 1 and the values of DNS of Jacobitz is
observed. A qualitative agreement between the
predictions of two other models 2 and 3 on one
hand and the results of DNS of Jacobitz on therothe
hand is also observed. The model 2 shows a good
agreement with these values only for dimensionless
time T greater than 307&30).

407

¢/KS in the other hand respectively on the principal
component of anisotropy ,h on the rate of

dimensionless shear numb#KS, on the turbulent
kinetic energy K and the potential energyﬂsir the

fthree retained models.

—— R=0.05 R=0.1 —Ri=0.15

Ri=0.6

R=02 — Ri=04
—R=1

Ri=3
005

30
(3-a)

\ —Ri=0.05 R=01 —Ri=0.15
N Ri=02 — Ri=04 R=06
—R=10 Ri=3.0

o \\\\_/
0 10 2 . Y o 50
3(b)
(3-b)

—R=005 R=01 —R=015

R=02 — R=04 Ri=0.6
— Rl Ri=3
v

0,05

0154

30
(3-0)
Fig. 3. Time evolution of the component b, , for

different values of Ri.
3-(a) modd 1, 3-(b) model 2; 3-(c) model 3
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Figures 3-(a), 3-(b) and 3-(show the evolution of
the principal component of anisotropy,bas a
function of the non-dimensional time S$fobtained Modd 1 —— KSR KS-U6

by the model 1, model 2 and model 3 respectively 2] oot v ems o+ eds
and for different values of the gradient Richardson 4o e
number. Three models confirm the existence of an

asymptotic equilibrium states for the component

byp
°
8

bi,. Three models indicate also thagff grows mff]:-\:‘:" - I
with Ri growing from weak stratification (Ri=0.05) - T
to strong stratification (Ri=3.0). This result ist o -
contradiction with our previous resultSBouzaiane 1
et al (2004)) We note also that the asymptotic s
equilibrium state for the model 1 and the model 2 e
are reached very quickly compared to the prediction (4)-a
of the model 3 which predict an equilibrium state -
from St==48. ‘ Model 3 —— e/KS=12 KS=U6
ha DNSof J Tdd%iﬁg d;zﬁs
A gKS=V10 #KS=1/14
4.2 Influence of the Initial Value of e/KSon
Equilibrium State of by, S
In Table 2 the equilibrium values of;b predicted o1 :A.-':':\\'C/—-—'/:
by several retained models and for results of DNS ol
of Jacobitzet al. (1999b)are presented for values
1/2, 1/6, 1/10 and 1/14 of ¢KS, and for e P A A pA »
Ri=0.15.The principal result presentedTiable 2is f('c)
surprising, since three models show a growth of the (4)-b
absolute value of ¢b),, for a decrease of the initial
value of ¢/KS). This result is in a clear
contradiction of the result of DNS of Jacobitz. o [T ——
ONSar ez o Ko
A gKS=110 #KS=1/14
Table 2 Asymptotic equilibrium values of (byy) ., 01
for Ri=0.15 5 ]
(b12)oo e o “\-.&.%n - . A
Models Model Model Model DNS >
1 2 3 of J 1
e/KS=1/2 -0.127 -0.136 - -0.1 s
e/KS=1/6  -0.134 -0.141 0.0797 - 0
¢/KS=1/10 -0.136 -0.145 -0.111 0.075 (4)-c
¢/KS=1/14 -0.137 -0.147 -0.128 -0.05
-0.138 -0.04 Fig. 4. Time evolution of the component b, for

different values of /K S and Ri=0.15.

4-(a) model 1, 4-(b) modéd 2, 4-(c) model 3
In Figs.4-(a), 4-(b) and 4-(c)are presented
evolutions predicted by the three retained models,
model 1, model 2 and model 3. Asymtotic
equilibrium states are reached 1St greater than 4.3 Growth Rate of the Turbulent Kinetic
20. The asympt.otic value of the principal Energy
component of anisotropy ;b decreases strongly
when the initial value of the shear number is An interesting other non dimensional parameter is
increased. An excellent agreementdt¢S=1/2 for ~ generally introduced to characterize the time
the three models and the values of DNSaxdobitz ~ evolution of the turbulent kinetic energy. The
et al (1999b)is observed. Model 2 shows a good growth rate of turbulent kinetic energy is
agreement with these values only for a mathematically defined as:

dimensionless time (7 = 20). 1dk P B ¢

y=——=—-——-
SK dt SK SK SK (0

It is clear that the growth ratg depends on the

. . P .
normalized production term— , the normalized
SK
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buoyancy flux B , and the normalized dissipation

SK
rate £ .
SK
Figure 5 shows the evolution of the growth rate ‘ TSR | KSUe kS0
of the turbulent kinetic energy. An asymptotically
constant value of is reached for non dimensional
time greater than 20 (St >20). Model 1 shows an 1

e/KS

over estimation of asymptotic equilibrium states of
v, whereas, the two other models show a very good
estimation of values of DNS of Jacobitz for 01
greater than 30.

3

—— Model 1 Model 2 —— Model 3 St
2] = S\ 6-(b)
1< (6-b)
> Ojumunrm e —— eKS=12 KS=1/6 —— &KS=1/10
e/KS=1/14 —— &/KS=1/20
1 04
2 03
9]
<
T T T T “° 02
0 10 20 0 40 50
S
0‘1—\
Fig. 5. Evolution of the growth ]
ratey for Ri=0.15and for ¢/KS=0.2 s s pA ® o %

St
6-(c)

In Figs.6-(a), 6-(b) and 6-(cjve show the evolution

of the non-dimensional shear numbgKS for (6-0)

Ri=0.15 and for differents initial values efKS, . ) . o
according to the three retained second-order Fig.6. Evolution of the normalised dissipation
models  model 1, model 2 and model 3, ratee/KSfor Ri=0.15, 6-(a) model 1, 6-(b) model

respectively. We notice that predictions of thes¢hr 2, 6-(c) model 3
models tend towards to equilibrium states and that

when the non-dimensional numbeKS increases w] el moe2 — 3
from &/KS =1/20 toe/KS= 1/2, the ratio of non- o

034

dimensional sheare/KS increases too. The

asymptotic values of the non dimensional shear B A —

number¢/KS decrease as the initial value of the 5 ]
shear number is increased. The asymptotic values of %7
the normalized dissipation ra¢#KS decrease as the a1
initial value of the shear number is increased. 021
The dependence of the non dimensional shear [ SR S SR

numbere/KS for non dimensional time St is shown
in Fig.7 for the three retained second-order models
and compared with values of DNS Jifcobitzet al. Fig. 7. Evolution of the normalized dissipation

(1999b)for Ri=0.15 and:/KS=1/6. rate S/stor Ri=0.15 and &/K S=1/6

05

——gKS=12 — gKS=U6 —— eKS=1/10 The asymptotic equilibrium behavior of non-

ST S0 dimensional parameters,b, Ble ands/KS allows
us to write the time-evolution equations of the
turbulent kinetic energi{ ande in

0.4+

0,34

% the following form:
S 71
ar 127 F3m o (71)
n‘1<\ . .
e When  — o, the non-dimensional parameters
. ' ' ' ' approach constant values and the above equation
0 o » ® “© 0 becomes a first-order differential equation with
(6-a) st - ; .
6@ constant coefficient and take the following form:
dK
—=agK (72)
dr
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states for three models summarized in Tab.3. We

£
Where: o =2b,-F3-— also notice that when the Richardson number Ri
SK increases from 1.0 to 2.0, the ratio of kineticrgge
Finally, asr — o we haveK = K(0) exp(@ 7). decreases whereas the ratio of potential energy

increases progressively. This prediction is cohteren
since when Ri grows from 1.0 to 2.0, the effects of

4.4 Evolutionsof Ratio K/E and Kp/E scalar dominates the effect of shear.

The influence of the Richardson number Ri on the
dimensionless ratios K/E andp/é is also analysed.

Figure 8 shows the influence of gradient
Richardson number ok/E and K/, we see here,
that at high stratification corresponding to Ri=1.Q R | Model | Model | Model | DNS | Model | Model | Model | DNS
and Ri=2.0, the ratio of potential energy to tota
energpr/E and Kinetic energy totalk/E have a 0z | 08¢ | 000: | 095 | 08/ | 020( | 0.092t | 0.082 | 0.27

tendency to reach the numerical value 0.5 for
‘C:St>40. 0.4 0.702 0.82¢ 0.872 0.8t 0.297 0.17¢ 0.12¢ 0.17

Table 3. Asymptotic equilibrium values of (K/E)
» and (K, /E)

0.€ 0.64¢ 0.77¢ 0.82% 0.82 0.35: 0.22¢ 0.17¢ 0.1¢

Ri=1,0
——Ri=20 10 0.59( 0.72% 0.747 0.7¢ 0.41( 0.27% 0.25% 0.21

\ 2. 0.53¢ 0.661 0.63: 0.7¢ 0.46: 0.33¢ 0.36¢ 0.2¢

KIE

Kp/E

—— Model 1 Model 2 —— Model 3
= DNSJ
[ 10 20 s 30 40 50
8@)
(8-a)
-y : —
w 14 St
< ¥
Fig. 9.Time evolution of theratios K/E and K
8§ L — ] JE,Ri=02
In Fig.9, the time evolution of the dimensionless
1 ——1 71— ratios K/E and I§/E are presented. Here E is the
&?b) total energy. For the ratio K/E, it is clear thaidel
1 ensures the best agreement with the resultseof th
(8-b) DNS of Jacobitz Jacobitz (1998) for non-
s dimensional time greater than 40X 40) and a
R qualitative agreement between the predictions of
' two other models (model 2 and model 3) on the one
R hand and the results of DNS &dcobitz (1998pn
e the other hand is also observed. For values of
u e dimensionless time greater than 40, model 2, model
¥ o 3 and model 1 show respectively an
underestimation of 15%, 30% and 35%6 the
| values of DNS of Jacobitz. For the rati(%/IK no
° ® » s o = ® good agreement has been observed between values
8) predicted by the retained second-order models and
) _ (80 _ the values of DNS aofacobitz (1998)
Fig. 8. Time evolution of theratios K/E and
Kp /E, Ri=2.0 and Ri=1.0 5 CONCLUSION

8-(a) model 1, 8-(b) model 2, 8-(c) model 3

In this study we have investigated a stably steatif
We add also that at high stratification (s€®.  turbulence submitted to an horizontal shear. Two
8-(a) the asymptotic equilibrium values of K/E and approaches have been retained. A first one is
K /E are slightly different from the mean value 0.5. analytic and is based on a linear solution when non
The model 1 shows an equal partition of the total linear effects of pressure and viscosity are négtec
energy (E=K+K) between the turbulent kinetic in time evolution equation. A Laplace Transform
energy and potential energy. Thésgs.8-(a), 8-(b)  has been used for integrating ten linear diffeegnti
and  8-(c),confirm the existence of equilibrium equations. Obtained solutions have confirmed at
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long time evolution the existence of asymptotic different methods, seems also an important
equilibrium behavious for dimensionless kinematics direction of investigations.

and scalars parameters. It is important here to note that stratification

turbulence is present in several engineering and
The second approach is a numerical one and i Senwronmental application. Examples are flow over
based on a second-order modeling of pressure- stralrg opography, river in flow into the ocean or efflien

and pressure-scalar gradient correlation, besides itz (2002
time evolution equation of dissipation rates. The discharge by power plang3acobitz (2002))

SSG model has been retained for pressure-strai
correlation and dissipation equation, whereas three
of the most known models are retained for pressurelgzi a=1 y=0 (A1)
scalar gradient correlations. Equations are cagtled Po
non dimensional form when non dimensional
parameters are introduced for both kinematic and (0)
scalar fields. A fourth order Runge Kutta method =N
has been used to integrate three non linear
differential equations submitted to the initial A1:—2y4(0) (A3)
condition of the results of DNS afacobitzet al

(1999a) B, =2y,(0) (A4)
The principal results obtained in this work are:

r}3\ppend|x A: Coefficients of analytical solutions

(A2)

. . . . . . Dll = 0 (A5)
- Asymptotic equilibrium behavior of dimensionless
kinematic and scalar parameters have been
confirmed by linear solutions obtained when non Bn=
linear effects of pressure and viscosity have been
neglected according to the results of DNS of Holt.  F,; =0 (A7)
-Analytic equilibrium solutions are functions only
of the initial conditions and the gradient Richamiso ( ) ( (0) ;i ylo( )J
Y3

number Ri.
2 282R

(A6)

(A8)

- The existence of asymptotic equilibrium states of

dimensionless kinematic and scalar parameters for

the three retained second order models are geyperall Fip= /35’9( ) (A9)
observed. \/ES

-The Coupling between the SSG model for the
kinematic field and the LRR model for the scalars _ Y3(0)+ ﬁZYm(O) (A10)
has been of a big contribution in predicting "*7| 2 = 2s’R
asymptotic equilibrium states. In fact the LRR
model retained in its individual for both kinematic
and scalar fields does not predict a such behavior~iz = y4( )
(Bouzaianeet al (2003c))
A, =Y,(0) (A12)

(A11)

- For the influence of initial value of the non

dimensional numbet/KS on equilibrium state of

by, , no agreement between results of the three B, =

retained second order models and results of DNS of

J have been observed. _ B y,(0) (A14)
= ys( )_g

- Model 1 (SSG-LRR) shows the better agreement
with the results of DNS of Jacobitz for the
predictions of the component,bof the tensor of _B (0 (A15)
anisotropy of Reynolds and the ratio of kinetic S

energy to total energy K/E.

- The Speziale, Sarkar and Gatski (SSG) model hasB,, = ( ) BY

been of a considerable contribution in the modeling S

of turbulence by improving predictions of different { y7(d y
P T

(A13)

¥5(0) (A16)

R
7&33@@ R J} (A7)

2R
ys(o)} (A18)

We think that the present work can be extended
b _B ys( ) 1] B y,(0)
S
19)

models.

according to several directions. A correction to E, =
models in a similar manner as a previous work of S 2\/§ 2
Hechmiet al (2012)to improve effects of the non By ( )
dimensional numbet/KS in turbulent parameters Fj;=7= g

can make a coherent extension to this work. The S ZN/E
study of the coupling effects of stratification and K;=0 (A20)
rotations in turbulent parameters, by the two C.= Vs (0) (A21)
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Ay = —g ys(0) (A22)
Bz =Ye (O)\/E 13
Clp - yS(O) Z@
R
= +i YG(O) (A25)
A, = {y7(0) s R }
Sy, 1S o 10 (A26)
B, S \/E Zx/ﬁ S yG(O)T 2 \/ﬁ
D —{_1(5/1 vs(0) _ yg(o)J} (A27)
““l 2/RUs R R
E, = (A28)
F,=0 (A29)
A,, = Y,(0) (A30)
B, = _S, %(0) (A31)
SR
A, = ¥,(0) (A32)
B =5 %), B0 (A33)
3p S 2\/? S 2\/'?
C = le(O)_[Sp]Z y3(0) (A34)
ro2 S ) 2R
A :K isp JZ 3;3 éO) .\ yloz(O)] (A35)
B, = i Yo (O 3B
SR
Cq =v1(0)+v,(0) +;/32(()) -2y,4(9) (A37)
A =0 (A38)
B, =2Y,(0) (A39)
D, =0 (A40)
E, =0 (A41)
E = |: y3(0) + ﬂzym(o)} (A42)
¢ 2  2RS
o= A %0 (A43)
q R S
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